Recent observations of the distant Universe suggest that much of the stellar mass of bright galaxies was already in place at z > 1. This presents a challenge for models of galaxy formation because massive haloes are assembled late in the hierarchical clustering process intrinsic to the cold dark matter (CDM) cosmology. In this paper, we discuss a new implementation of the Durham semi-analytic model of galaxy formation in which feedback due to active galactic nuclei (AGN) is assumed to quench cooling flows in massive haloes. This mechanism naturally creates a break in the local galaxy luminosity function at bright magnitudes. The model is implemented within the Millennium N-body simulation. The accurate dark matter merger trees and large number of realizations of the galaxy formation process enabled by this simulation result in highly accurate statistics. After adjusting the values of the physical parameters in the model by reference to the properties of the local galaxy population, we investigate the evolution of the K-band luminosity and galaxy stellar mass functions. We calculate the volume-averaged star formation rate density of the Universe as a function of redshift and the way in which this is apportioned amongst galaxies of different mass. The model robustly predicts a substantial population of massive galaxies out to redshift z ∼ 5 and a star formation rate density which rises at least out to z ∼ 2 in objects of all masses. Although observational data on these properties have been cited as evidence for 'antihierarchical' galaxy formation, we find that when AGN feedback is taken into account, the fundamentally hierarchical CDM model provides a very good match to these observations.
We describe the GALFORM semi‐analytic model for calculating the formation and evolution of galaxies in hierarchical clustering cosmologies. It improves upon, and extends, the earlier scheme developed by Cole et al. The model employs a new Monte Carlo algorithm to follow the merging evolution of dark matter haloes with arbitrary mass resolution. It incorporates realistic descriptions of the density profiles of dark matter haloes and the gas they contain; it follows the chemical evolution of gas and stars, and the associated production of dust; and it includes a detailed calculation of the sizes of discs and spheroids. Wherever possible, our prescriptions for modelling individual physical processes are based on results of numerical simulations. They require a number of adjustable parameters, which we fix by reference to a small subset of local galaxy data. This results in a fully specified model of galaxy formation which can be tested against other data. We apply our methods to the ΛCDM cosmology and find good agreement with a wide range of properties of the local galaxy population: the B‐ and K‐band luminosity functions, the distribution of colours for the population as a whole, the ratio of ellipticals to spirals, the distribution of disc sizes, and the current cold gas content of discs. In spite of the overall success of the model, some interesting discrepancies remain: the colour–magnitude relation for ellipticals in clusters is significantly flatter than observed at bright magnitudes (although the scatter is about right), and the model predicts galaxy circular velocities, at a given luminosity, that are about 30 per cent larger than is observed. It is unclear whether these discrepancies represent fundamental shortcomings of the model, or whether they result from the various approximations and uncertainties inherent in the technique. Our more detailed methods do not change our earlier conclusion that just over half the stars in the Universe are expected to have formed since
We present predictions for the abundance of submillimetre galaxies (SMGs) and Lyman‐break galaxies (LBGs) in the Λ cold dark matter cosmology. A key feature of our model is the self‐consistent calculation of the absorption and emission of radiation by dust. The new model successfully matches the LBG luminosity function, as well as reproducing the properties of the local galaxy population in the optical and infrared. The model can also explain the observed galaxy number counts at 850 μm, but only if we assume a top‐heavy initial mass function for the stars formed in bursts. The predicted redshift distribution of SMGs depends relatively little on their flux over the range 1–10 mJy, with a median value of z≈ 2.0 at a flux of 5 mJy, in good agreement with the recent measurement by Chapman et al. The counts of SMGs are predicted to be dominated by ongoing starbursts. However, in the model these bursts are responsible for making only a few per cent of the stellar mass locked up in massive ellipticals at the present day.
The halo occupation distribution (HOD) describes the relation between galaxies and dark matter at the level of individual dark matter halos. The properties of galaxies residing at the centers of halos differ from those of satellite galaxies because of differences in their formation histories. Using a smoothed particle hydrodynamics (SPH) simulation and a semi-analytic (SA) galaxy formation model, we examine the separate contributions of central and satellite galaxies to the HOD, more specifically to the probability P (N |M ) that a halo of virial mass M contains N galaxies of a particular class. In agreement with earlier results for dark matter subhalos, we find that the mean occupation function N M for galaxies above a baryonic mass threshold can be approximated by a step function for central galaxies plus a power law for satellites, and that the distribution of satellite numbers is close to Poisson at fixed halo mass. Since the number of central galaxies is always zero or one, the width of P (N |M ) is narrower than a Poisson distribution at low N and approaches Poisson at high N . For galaxy samples defined by different baryonic mass thresholds, there is a nearly linear relation between the minimum halo mass M min required to host a central galaxy and the mass M 1 at which an average halo hosts one satellite, with M 1 ≈ 14M min (SPH) or M 1 ≈ 18M min (SA). The stellar population age of central galaxies correlates with halo mass, and this
We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221 414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the 'baryon oscillations' that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial n s = 1 spectrum, h = 0.72 and negligible neutrino mass, the preferred parameters are m h = 0.168 ± 0.016 and a baryon fraction b / m = 0.185 ± 0.046 (1σ errors). The value of m h is 1σ lower than the 0.20 ± 0.03 in our 2001 analysis of the partially E-mail: shaun.cole@durham.ac.uk C 2005 RAS 506 S. Cole et al.complete 2dFGRS. This shift is largely due to the signal from the newly sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard m = 0.3: in combination with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP), we infer m = 0.231 ± 0.021.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.