Ewe size, pregnancy nutrition and pregnancy rank are known to affect the productive performance of ewes and their offspring. The aim of the present study was to compare the effects of two nutritional regimens, from day 21 to day 140 of pregnancy, in singleton-and twin-bearing ewes of two different mean weights, taken from a single flock. The study included Large ewes offered Ad lib (Large-Ad lib, n= 151), Large ewes offered Maintenance (Large-Maintenance, n = 153), Small ewes offered Ad lib (Small-Ad lib, n = 155) and Small ewes offered Maintenance (Small-Maintenance, n = 153) that were either singleton-or twin-bearing. During the period day 21 to day 140 Maintenance and Ad lib feeding regimens included Large and Small ewes and singleton-and twin-bearing ewes. At days 1 and 140 of pregnancy Large ewes were heavier (P < 0.05) and of greater (P < 0.05) body condition than Small ewes. Similarly, at days 1 and 140 of pregnancy twin-bearing ewes were heavier (P < 0.05) than single-bearing ewes. At day 1 of pregnancy there was no difference in ewe liveweight and body condition scores between Maintenance and Ad lib-fed ewes, but by day 140 ewes in the Ad lib regimen were heavier (P < 0.05) and had greater (P < 0.05) body condition than Maintenance ewes. There was an interaction (P < 0.05) between ewe nutritional regimen and lamb birth rank for lamb birth weight such that twin lambs born to Maintenance regimen ewes were lighter (P < 0.05) than their counterparts born to Ad lib ewes (4.52 ± 0.06 versus 5.23 ± 0.06 kg respectively). This relationship was not observed in singletons. There was also an interaction (P < 0.05) between ewe size and nutritional regimen for lamb birthweight. Birth weights did not differ between lambs born to either Small or Large ewes on the Ad lib feeding regimen. However, lambs born to Small ewes on the Maintenance feeding regimen were lighter (P < 0.05) than their counterparts born to Large ewes (5.09 ± 0.07 versus 5.37 ± 0.07 kg respectively). At day 100 of lactation lambs born to Large ewes were heavier (P < 0.05) than those born to Small ewes (32.65 ± 0.37 versus 31.16 ± 0.35 kg respectively) and those born to Ad lib ewes were heavier (P < 0.05) than those born to Maintenance ewes (32.77 ± 0.37 versus 31.03 ± 0.36 kg respectively). This study shows that level of dam pregnancy nutrition has a greater effect on twin-born lambs than their singleton-born counterparts. Furthermore, the data suggests that the heavier liveweights at weaning of lambs born to Large ewes may not have compensated for their dams' greater nutritional requirements compared to their smaller counterparts.
Many environmental factors applied postnatally are known to affect milk production of the dam, but to date, the effects of different fetal environments on subsequent first lactational performance of the offspring have not been reported. Four hundred fifty heavy (H; 60.8 kg +/- 0.18) and 450 light (L; 42.5 kg +/- 0.17) dams were randomly allocated to ad libitum (A) or maintenance (M) nutritional regimens from d 21 until d 140 of pregnancy, under pastoral grazing conditions (HA, n = 151; HM, n = 153; LA, n = 155; LM, n = 153). At d 100 of pregnancy, a sub-group of twin-bearing dams was killed and fetal mammary glands collected. From 1 wk before lambing, all remaining dams were fed ad libitum until weaning. After weaning, female progeny were managed and fed under pastoral conditions as 1 group. At 2 yr of age, 72 twin-rearing ewe offspring were milked once a week for 7 wk. Fetuses from M-dams had heavier mammary glands (P = 0.03) compared with A-fetuses. Fetuses from H-dams had greater (P = 0.0008) mammary duct area compared with L-fetuses. At 2 yr of age, M-offspring had greater milk yields at d 7 (P = 0.02) and d 28 (P = 0.09) of lactation and tended to have greater accumulated milk yields (P = 0.11) compared with A-offspring. Ewes born to M-dams showed greater lactose percentage at d 14 (P = 0.002), d 21 (P = 0.06), and d 28 (P = 0.07) of lactation and greater (P = 0.049) accumulated lactose yields and CP (P = 0.06) yields compared with A-offspring. Ewes born to H-dams displayed greater milk yields at d 14 (P = 0.08) and d 21 (P = 0.02) and had greater accumulated milk yield (P = 0.08) and lactose yield (P = 0.04) compared with L-offspring. Lambs born to M-offspring were heavier at birth (P = 0.02) and grew faster until weaning (P = 0.02), matching the milk yield and composition data, compared with their ad libitum counterparts. Birth weight was not affected (P > 0.10) by grand dam size; however, lambs born to H-offspring grew faster from birth until d 49 of age (P = 0.03). In conclusion, dam nutrition during pregnancy affected the resulting milk production of the offspring and composition and growth of their lambs. In addition, dam size affected the milk production of the offspring, lactose yield, and growth of their lambs. These findings are important for furthering our understanding of how the environment to which the female fetus is exposed can affect her subsequent development and her ability to nourish the next generation.
Nutrition of the ewe at various stages of pregnancy is known to affect ewe and offspring performance. However, little is known regarding the potential interactions among differing maternal nutrition regimens in early and mid–late pregnancy. The objective of the present study was to examine the effects and potential interactions of three pastoral nutritional treatments from Day 21 of pregnancy (P21) to P50 (Sub-maintenanceP21–50 (total liveweight change achieved, SMP21-50, –0.15 ± 0.02 kg/day) v. MaintenanceP21–50 (MP21-50,–0.02 ± 0.02 kg/day) v. Ad libitumP21–50 (AdP21-50,0.15 ± 0.02 kg/day) and two pastoral nutritional treatments from P50 to P139 [MaintenanceP50–139 (designed to match change in conceptus mass, total liveweight change achieved, 0.19 ± 0.01 kg/day) v. Ad libitumP50–139 (0.26 ± 0.01 kg/day)] on 382 twin-bearing ewes and their offspring until 91 days after the mid-point of lambing (L91). Ewe liveweight and condition scores in pregnancy and lactation, and lamb liveweights, indices of colostrum uptake and survival were recorded. There were no interactions between nutritional periods for lamb liveweight, apparent colostrum intake and survival, and ewe liveweight, condition score and total weight of lamb per ewe at the end of the study. At L91, ewe nutritional treatment during P21–50 or P50–139 had no effect on either ewe liveweight or body condition score. Ewe nutritional treatment during P21–50 had no effect on lamb birthweight. Lambs born to AdP50–139 ewes were lighter (P < 0.05) than those born to MP50–139 ewes (5.32 ± 0.04 v. 5.48 ± 0.04 kg, respectively). Ewe nutritional treatment during P21–50 or P50–139 had no (P > 0.05) effect on indices of colostrum uptake in lambs at 24–36 h of age. At L91, ewe nutritional treatment during P21–50 or P50–139 had no effect on lamb liveweight, survival or total weight of lamb per ewe. In conclusion, although considerable differences in ewe liveweight were observed during pregnancy, the nutritional treatments had no effect on the production parameters measured at the end of the study. These results indicate, first, that farmers can use early pregnancy as a period to control ewe nutrition when ewes are offered at least pregnancy maintenance levels of nutrition in the mid–late pregnancy period and, second, that there is no advantage from offering twin-bearing ewes a level of nutrition above their pregnancy maintenance requirements in mid–late pregnancy.
In temperate climates, the cost of providing feed is greater in winter than in other seasons, causing ewes to be fed restricted rations during some periods of pregnancy. Epidemiological information indicates that undernutrition of the fetus may affect its health and performance in later life (i.e., fetal programming), and these effects may be passed between generations. The primary focus of the results presented in this paper is to examine the effects of feeding levels during pregnancy on a variety of traits from offspring at the fetal stage to 3.5 yr of age and also traits in the grand-offspring. Two studies are reported in which ewes were fed restricted diets during pregnancy, with a variety of fetal traits, offspring traits up to 3.5 yr of age, or grand-offspring traits up to 8 mo of age being measured. Study 2 also considered differences in dam size (heavy vs. light). In study 1, several fetal mammary gland measures indicated that milking ability may be enhanced in offspring from dams fed ad libitum during pregnancy. However, study 2 showed that mammary mass was greater in fetuses from dams fed at maintenance during pregnancy and that contemporaries of these fetuses produced greater protein and lactose yields in their first lactation. In the second lactation, the advantages in protein and lactose yields did not reoccur and ewes from ad libitum-fed dams produced greater fat yield. In study 2, grand-offspring whose granddams were fed at maintenance levels during pregnancy were lighter at birth in both the first and second parturitions than those whose granddams were fed ad libitum during pregnancy. First-parity grand-offspring whose granddams were fed maintenance levels during pregnancy achieved heavier BW by 40 to 50 d of age in the first lactation, which reflected the greater protein and lactose yields; however, no BW differences were present in second-parity lambs at the same age. A smaller proportion of first-parity ewe grand-offspring from heavy granddams that were fed ad libitum during pregnancy reached puberty at approximately 8 mo of age relative to the other granddam size and feeding groups. These results indicate that dam nutrition can affect the yield and composition of milk in their offspring and the BW and reproductive capability of their grand-offspring. Molecular and physiological mechanisms for these changes are being sought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.