The axial and radial thermal responses of a field-scale energy pile installed in dense sand and subjected to monotonic and cyclic temperatures are examined. It is found that the axial thermal strains in the pile are more restricted to thermal expansion/contraction compared to radial thermal strains. The radial thermal strains are close to that of a pile expanding/contracting freely, indicating minimal resistance from the surrounding soil in the radial direction. As a result, very low magnitudes of radial thermal stresses developed in the pile compared to axial thermal stresses. The pile-soil radial contact stresses estimated from cavity expansion analysis are up to 12 kPa for a pile temperature change of 22.5 o C and are likely negligible for the range of commonly-encountered operating temperatures of energy piles installed in dense sand. During cyclic heating and cooling, unstable changes in axial and radial thermal strains were observed initially during initial cycles indicating a ratcheting response. The changes in strains became more stable over further cycles, without significant changes in side friction, pile-soil contact stresses, or strength of the dense sand.
Shallow geothermal heat exchangers integrated in structural pile foundations have the capability of being an efficient and costeffective solution to cater for the energy demand for heating and cooling of built structures. However, limited information is available on the effects of temperature on the geothermal energy pile load capacity. This paper discusses a field pile test aimed at assessing the impact of thermomechanical loads on the shaft capacity of a geothermal energy pile. The full-scale in situ geothermal energy pile equipped with ground loops for heating/cooling and multilevel Osterberg cells for static load testing was installed at Monash University, Melbourne, Australia in a sandy profile. Strain gauges, thermistors, and displacement transducers were also installed to study the behavior of the energy pile during the thermal and mechanical loading periods. It has been found that the pile shaft capacity increased after the pile was heated and returned to the initial capacity (i.e., initial conditions) when the pile was allowed to cool naturally. This indicated that no losses in pile shaft capacity were observed after heating and cooling cycles. A variance in average vertical thermal strains was observed along the upper section of the pile shaft at the end of the heating periods. These were almost fully recovered at the end of the cooling periods, indicating that they are of an elastic nature. Pile average circumferential strains were found to be relatively uniform at the end of the heating and cooling periods and did not change with depth. They, also, were fully recovered during the cooling period. It was also observed that the increase of temperature during the heating periods prompted the pile shaft to expand radially. Subsequently, as the pile cooled down, the pile shaft slowly contracted and returned closely to its original condition, suggesting a thermoelastic behavior
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.