We have previously shown that the integral membrane protein CD317 has both a conventional transmembrane domain near its N-terminus and a C-terminal glycosyl-phosphatidylinositol (GPI) anchor. With the possible exception of a minor topological variant of the prion protein, there remain no other convincing examples of a mammalian protein with such a topology. CD317 is localised to cholesterol-rich lipid microdomains (`lipid rafts') in the plasma membrane and is internalised from the cell surface for delivery to a juxta-nuclear compartment (most probably the TGN). We have now investigated the mechanism by which CD317 is internalised and find that this raft-associated integral membrane protein is internalised through a clathrin-dependent pathway, internalisation is dependent upon a novel dual-tyrosine-based motif in the cytosolic domain of CD317, the cytosolic domain of CD317 can interact with the μ subunits of the AP2 and AP1 adaptor complexes, interaction with AP1 is required for delivery of CD317 back to the TGN, and removal of the GPI anchor from CD317 reduces the efficiency of CD317 internalisation. Collectively, these data indicate that CD317 is internalised and delivered back to the TGN by the sequential action of AP2 and AP1 adaptor complexes and that, surprisingly, the clathrin-mediated internalisation of CD317 occurs more efficiently if CD317 is localised to lipid rafts.
CD317/tetherin is a lipid raft–associated integral membrane protein with a novel topology. It has a short N-terminal cytosolic domain, a conventional transmembrane domain, and a C-terminal glycosyl-phosphatidylinositol anchor. We now show that CD317 is expressed at the apical surface of polarized epithelial cells, where it interacts indirectly with the underlying actin cytoskeleton. CD317 is linked to the apical actin network via the proteins RICH2, EBP50, and ezrin. Knocking down expression of either CD317 or RICH2 gives rise to the same phenotype: a loss of the apical actin network with concomitant loss of apical microvilli, an increase in actin bundles at the basal surface, and a reduction in cell height without any loss of tight junctions, transepithelial resistance, or the polarized targeting of apical and basolateral membrane proteins. Thus, CD317 provides a physical link between lipid rafts and the apical actin network in polarized epithelial cells and is crucial for the maintenance of microvilli in such cells.
Fasciola hepatica is a helminth pathogen that drives Th2/Treg immune responses in its mammalian host. The parasite releases a large number of molecules that are critical to inducing this type of immune response. Here we have selected recombinant forms of two major F. hepatica secreted molecules, the protease cathepsin L (rFhCL1) and an antioxidant, sigma class glutathione transferase (rFhGST-si), to examine their interactions with dendritic cells (DCs). Despite enzymatic and functional differences between these molecules, both induced interleukin-6 (IL-6), IL-12p40, and macrophage inflammatory protein 2 (MIP-2) secretion from DCs and enhanced CD40 expression. While this induction was mediated by Toll-like receptor 4 (TLR4), the subsequent intracellular signaling pathways differed; rFhCL1 signaled through p38, and rFhGST-si mediated its effect via c-Jun N-terminal kinase (JNK), p38, p-NF-Bp65, and IRF5. Neither rFhCL1 nor rFhGST-si enhanced DC phagocytosis or induced Th2 immune responses in vivo. However, DCs matured in the presence of either enzyme attenuated IL-17 production from OVA peptide-specific T cells in vivo. In addition, DCs exposed to either antigen secreted reduced levels of IL-23. Therefore, both F. hepatica FhCL1 and FhGST-si modulate host immunity by suppressing responses associated with chronic inflammation-an immune modulatory mechanism that may benefit the parasite's survival within the host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.