Huntington's disease (HD) is one of an increasing number of neurodegenerative disorders caused by a CAG/polyglutamine repeat expansion. Mice have been generated that are transgenic for the 5' end of the human HD gene carrying (CAG)115-(CAG)150 repeat expansions. In three lines, the transgene is ubiquitously expressed at both mRNA and protein level. Transgenic mice exhibit a progressive neurological phenotype that exhibits many of the features of HD, including choreiform-like movements, involuntary stereotypic movements, tremor, and epileptic seizures, as well as nonmovement disorder components. This transgenic model will greatly assist in an eventual understanding of the molecular pathology of HD and may open the way to the testing of intervention strategies.
SUITIH1 al'yAnalysis of HLA class II transgenic mice has progressed in recent years from analysis of single chain HLA class II transgenes with expression of mixed mouse/human heterodimers to double transgenic mice expressing normal human heterodimers. Previous studies have used either HLA transgenic mice in which there is a species-matched interaction with CD4 or mice which lack this interaction. Since both systems are reported to generate HLA-restricted responses, the matter of the requirement for species-matched CD4 remains unclear. We have generated triple transgenic mice expressing three human transgenes, DRA, DRB, and CD4, and compared HLA-restricted responses to peptide between human-CD4 + (Hu-CD4 +) and Hu-CD4-littermates. We saw no difference between Hu-CD4 + and Hu-CD4-groups, supporting the notion that for some responses at least the requirement for species-matched CD4 may not be absolute. Evidence for positive selection of mouse T cell receptors in HLA-DR transgenic mice came both from the acquisition of new, HLA-restricted responses to various peptides and from an increased frequency of T cells using the TCR V34 gene segment. An important goal with respect to the analysis of function in HLA transgenic mice is the clarification of mechanisms which underpin the recognition of self-antigens in human autoimmune disease. As a first step towards 'humanized' disease models in HLA transgenic mice, we analyzed the responses of HLA-DR transgenic mice to the human MPB 139-154 peptide which has been implicated as an epitope recognized by T cells of multiple sclerosis patients. We obtained T cell responses to this epitope in transgenic mice but not in nontransgenic controls. This study suggests that HLA transgenic mice will be valuable in the analysis of HLA-restricted T cell epitopes implicated in human disease and possibly in the design of new disease models.
The secondary cytotoxic responses to the male specific antigen (H-Y) in in mice show H-2 restrictions so that cytotoxic female cells must share K and/or D end antigen with the male target cells. The production of cytotoxic cells is under the control of Ir genes, thus offering the possibility of studying the function of Ir genes in H-2-restricted cytotoxic responses. There are two kinds of Ir genes regulating this response; the dominant gene in the H-2b haplotype and complementary genes in other haplotypes. Now we have been able to map the dominant gene and some of the complementary genes: the dominant genes is in IAb, and in H-2k/H-2d complementation, the Ir genes are in ICk and ICd, and in H-2k/H2s and H-2k/H-2q complementations, at least the H-2k gene is in IC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.