The Mars 2020 Perseverance rover landing site is located within Jezero crater, a ∼ 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.
The Mars Science Laboratory Curiosity rover has explored over 400 m of vertical stratigraphy within Gale crater to date. These fluvio‐deltaic, lacustrine, and aeolian strata have been well‐documented by Curiosity's in situ and remote science instruments, including the Mast Camera (Mastcam) pair of multispectral imagers. Mastcam visible to near‐infrared spectra can broadly distinguish between iron phases and oxidation states, and in combination with chemical data from other instruments, Mastcam spectra can help constrain mineralogy, depositional origin, and diagenesis. However, no traverse‐scale analysis of Mastcam multispectral data has yet been performed. We compiled a database of Mastcam spectra from >600 multispectral observations and quantified spectral variations across Curiosity's traverse through Vera Rubin ridge (sols 0–2302). From principal component analysis and an examination of spectral parameters, we identified nine rock spectral classes and five soil spectral classes. Rock classes are dominated by spectral differences attributed to hematite and other oxides (due to variations in grain size, composition, and abundance) and are mostly confined to specific stratigraphic members. Soil classes fall along a mixing line between soil spectra dominated by fine‐grained Fe‐oxides and those dominated by olivine‐bearing sands. By comparing trends in soil versus rock spectra, we find that locally derived sediments are not significantly contributing to the spectra of soils. Rather, varying contributions of dark, mafic sands from the active Bagnold Dune field is the primary spectral characteristic of soils. These spectral classes and their trends with stratigraphy provide a basis for comparison in Curiosity's ongoing exploration of Gale crater.
The stratigraphic architecture of aeolian sandstones is thought to record signals originating from both autogenic dune behavior and allogenic environmental boundary conditions within which the dune field evolves. Mapping of outcrop-scale surfaces and sets of cross-strata between these surfaces for the Jurassic Page Sandstone near Page, Arizona, USA, demonstrates that the stratigraphic signature of autogenic behavior is captured by variable scour depths and subsequent fillings, whereas the dominant signatures of allogenic boundary conditions are associated with antecedent surface topography and variable water-table elevations. At the study area, the Page Sandstone ranges from 55 to 65 m thick and is separated from the underlying Navajo Sandstone by the J-2 regional unconformity with meters of relief. Thin, climbing sets of cross-strata of the basal Page representing early dune-field accumulations fill J-2 depressions. In contrast, the overlying lower and middle Page consist of cross-strata ranging from less than 1 to 15 meters thick (average 2.44 m), and packaged between outcrop-scale bounding surfaces, though parts of the lower Page are bounded from beneath by the J-2. These bounding surfaces have been previously correlated to highstand deposits of the adjacent Carmel sea and at this site possess up to 13 meters of erosional relief produced by dune scour. Notably absent in packages of cross-strata bounded by these outcrop-scale surfaces are strata of early dune-field accumulations, any interdune deposits, and climbing-dune strata. Instead, these packages preserve a scour-and-fill architecture created by large dunes migrating in a dry, mature, dune field undergoing negligible bed aggradation. Any record of early phases of dune-field construction for the lower and middle Page are interpreted to have been cannibalized by the deepest scours of later, large dunes. Interpretations are independently supported by the relatively large coefficients of variation (cv) in middle Page set thicknesses (cv = 0.90), which are consistent with set production by successive deepest trough scours, the relatively low coefficient of variation for the depression-filling basal Page and lower Page sets consistent with a significant component of bed aggradation in J-2 depressions (cv = 0.64 and 0.49), and the fit of set thickness distributions to established theory. Numerical modeling presented here and more completely in the companion paper demonstrates how this cannibalization of early-phase stratigraphy is an expected outcome of autogenic dune-growth processes, and that early-phase strata can be preserved within antecedent depressions. Relative rise of the inland water table from basin subsidence and changing Carmel sea level forced preservation of 5–6 stacked packages composed of scour-and-fill architecture. Without these allogenic forcings, the Page would be little more than an erosional surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.