A space-time discontinuous Galerkin finite element method for the compressible Navier-Stokes equations is presented. We explain the space-time setting, derive the weak formulation and discuss our choices for the numerical fluxes. The resulting numerical method allows local grid adaptation as well as moving and deforming boundaries, which we illustrate by computing the flow around a 3D delta wing on an adapted mesh and by simulating the dynamic stall phenomenon of a 2D airfoil in rapid pitch-up maneuver.
The space-time discontinuous Galerkin discretization of the compressible Navier-Stokes equations results in a non-linear system of algebraic equations, which we solve with pseudo-time stepping methods. We show that explicit Runge-Kutta methods developed for the Euler equations suffer from a severe stability constraint linked to the viscous part of the equations and propose an alternative to relieve this constraint while preserving locality. To evaluate its effectiveness, we compare with an implicit-explicit Runge-Kutta method which does not suffer from the viscous stability constraint. We analyze the stability of the methods and illustrate their performance by computing the flow around a 2D airfoil and a 3D delta wing at low and moderate Reynolds numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.