Long rifts near the front of the Ronne Ice Shelf, Antarctica, are observed to begin as fractures along the lateral boundaries of outlet streams feeding the shelf. These flaws eventually become the planes along which tabular icebergs calve. The fractures propagate laterally as they advect through the shelf, with orientations that can be explained by the glaciological stress field. Fracture length remains constrained over much of the advective path, and locations of crack tip arrest are observed to coincide with structural boundaries, such as suture zones between ice from adjacent outlet glaciers. Geomechanical principles and numerical models demonstrate that in the absence of these suture zones crack tips are unlikely to arrest in these locations. We conclude that lateral inhomogeneity in the ice plays an important role in fracture mechanics through most of the ice shelf. Only near the shelf front are these local structural effects overcome such that the large rifts required for tabular iceberg production develop.
ABSTRACT. The surface of the Ross Ice Shelf (RIS) is textured by flow stripes, crevasses and other features related to ice flow and deformation. Here, moderate resolution optical satellite images are used to map and classify regions of the RIS characterized by different surface textures. Because the textures arise from ice deformation, the map is used to identify structural provinces with common deformation history. We classify four province types: regions associated with large outlet glaciers, shear zones, extension downstream of obstacles and suture zones between provinces with different upstream sources. Adjacent provinces with contrasting histories are in some locations deforming at different rates, suggesting that our province map is also an ice fabric map. Structural provinces have more complicated shapes in the part of the ice shelf fed by West Antarctic ice streams than in the part fed by outlet glaciers from the Transantarctic Mountains. The map may be used to infer past variations in stress conditions and flow events that cannot be inferred from flow traces alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.