The fast and accurate analysis of chiral chemical mixtures is crucial for many applications but remains challenging. Here we use elliptically-polarized femtosecond laser pulses at high repetition rates to photoionize chiral molecules. The 3D photoelectron angular distribution produced provides molecular fingerprints, showing a strong forward-backward asymmetry which depends sensitively on the molecular structure and degree of ellipticity. Continuously scanning the laser ellipticity and analyzing the evolution of the rich, multi-dimensional molecular signatures allows us to observe real-time changes in the chemical and chiral content present with unprecedented speed and accuracy. We measure the enantiomeric excess of a compound with an accuracy of 0.4% in 10 min acquisition time, and follow the evolution of a mixture with an accuracy of 5% with a temporal resolution of 3 s. This method is even able to distinguish isomers, which cannot be easily distinguished by mass-spectrometry.
In this work, the photoionization of chiral molecules by an elliptically polarized, high repetition rate, femtosecond laser is probed. The resulting 3D photoelectron angular distribution shows a strong forward–backward asymmetry, which is highly dependent not only on the molecular structure but also on the ellipticity of the laser pulse. By continuously varying the laser ellipticity, we can observe molecular and enantiomer changes in real time at a previously unseen speed and precision. The technique allows enantiomeric excess of a pure compound to be measured with a 5% precision within 3 s, and a 10‐min acquisition yields a precision of 0.4%. The isomers camphor and fenchone can be easily distinguished, unlike with conventional mass spectrometry. Preliminary results for the pharmaceutically interesting ibuprofen are also given, showing the capability of photoionization as a means of distinguishing larger molecular systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.