Gray mold is an important disease in grapevines in Chile, and its control depends primarily on the use of fungicides with a single-site mode of action. Botrytis cinerea has a high risk of developing resistance against such fungicides. Therefore, novel chemical options are needed to achieve satisfactory control of gray mold. Isofetamid is a new succinate dehydrogenase inhibitor (SDHI) fungicide with a single-site of action that inhibits cellular respiration and appears to be a new option in the chemical treatment against gray mold. The aim of this study was to determine the effectiveness of isofetamid in controlling grapevine gray mold in Chile. Field trials undertaken in three different commercial vineyards showed that isofetamid controls gray mold to a similar extent as fenhexamid. During 2012 and 2013, 10 B. cinerea isolates were obtained from commercial vineyards in central Chile to determine their sensitivity to isofetamid. The median inhibitory concentration of isofetamid varied between 0.3-10.0 µg mL -1 and 0.6 to >10 µg mL -1 for mycelium and conidia, respectively. The efficacy of isofetamid against B. cinerea in apple bioassays varied between 61-100% and 37.5-100% for mycelium and conidia, respectively. The results of this study demonstrate that isofetamid is a highly effective fungicide against B. cinerea.
Gray mold (Botrytis cinerea Pers.) is a major disease of grapevine (Vitis vinifera L.) worldwide. Integrated control strategies, including canopy management and fungicide treatments, are needed to control gray mold. Chemical control relies on the use of single mode of action fungicides. The aim of this research was to study the sensitivity of B. cinerea to boscalid, which is a single mode of action fungicide of the succinate dehydrogenase inhibitor (SDHI) fungicide group. Fifty isolates were obtained in 2012 to 2013 from commercial vineyards in central Chile. Vineyards had received two boscalid applications at least for four consecutive years. Briefly, the percent mycelial growth inhibition (MGI) was determined on minimal medium (MM) (2) plus 50 μg m−1 of boscalid (Cantus 50 WP, BASF Chile). Each isolate was tested in triplicate, obtaining 2% highly resistant (HR, MGI ≤25%), 32% moderately resistant (MR, MGI 26 to 50%), 64% low resistant (LR, MGI 51 to 80%), and 2% sensitive (S, MGI ≥81%) phenotypes. Nine isolates were arbitrary selected and compared for MGI on MM plus 50 μg ml−1 of boscalid (1) and conidial germination inhibition (CGI) on yeast extract-bacto peptone-Na acetate (YBA) plus 5 μg ml−1 of boscalid (2,3). Isolates previously determined to be S and HR had the same phenotype for both MGI and CGI. However, all of the MR and LR isolates, determined based on the MGI tests, were identified as S isolates in the CGI tests. Using primer-introduced restriction analysis (PIRA)-PCR (4), the SdhB mutations were detected only in the HR isolate. The amplifications were performed with H272L-fw/H272-rev and were digested by the enzyme BglII, yielding 35- and 85-bp fragments and confirming a mutation at codon 272 (H272L) in the HR phenotype. The efficacy of the label-rate (0.4 g liter−1) boscalid in controlling gray mold was determined on ‘Granny Smith’ apples. The apples were surface-disinfested (75% ethanol, 30 s), wounded with a sterile syringe, and inoculated with a mycelium plug (5 mm in diameter) or 20 μl of a conidial suspension (106 conidia/ml) of one HR, MR, and S isolate. The inoculum was placed on the wounded sites after boscalid application. Apples were incubated for 7 days at 21°C. Each test had four replicates and the experiment was conducted three times. Boscalid slightly controlled (<6.7% efficacy) gray mold on the apples that were inoculated with mycelium or conidia of the HR phenotype isolate, while the sensitive isolate was highly controlled (>95% efficacy), and the MR isolate was moderately controlled (27 to 34% efficacy). These results demonstrate that mycelium or conidia assays using MM + 50 μg ml−1 boscalid or YBA+5 μg ml−1 boscalid consistently detected HR isolates. The S isolates detected using MGI were also S according with the CGI tests. The presence of the boscalid HR strains of B. cinerea associated with the H272L mutation in grapevine in Chile is reported for the first time in this study. This finding suggests that resistance to boscalid needs to be considered in the design of gray mold control strategies in commercial grapevine orchards. References: (1) D. Fernandez-Ortuño et al Plant Dis. 96:1198, 2012. (2) M.-J. Hu et al. J. Phytopathol. 159:616, 2011. (3) Y. K. Kim and C. L. Xiao. Plant Dis. 94:604, 2010. (4) T. Veloukas et al. Plant Dis. 95:1302, 2011.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.