We carried out fully-atomistic reactive molecular dynamics simulations to study the elastic properties and fracture patterns of transition metal dichalcogenide (TMD) MoX2 (X = S, Se, Te) membranes, in their 2H and 1T phases, within the framework of the Stillinger–Weber potential. Results showed that the fracture mechanism of these membranes occurs through a fast crack propagation followed by their abrupt rupture into moieties. As a general trend, the translated arrangement of the chalcogen atoms in the 1T phase contributes to diminishing their structural stability when contrasted with the 2H one. Among the TMDs studied here, 2H-MoSe2 has a higher tensile strength (25.98 GPa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.