In this paper, the self-adjointness of Eringen's nonlocal elasticity is investigated based on simple one-dimensional beam models. It is shown that Eringen's model may be nonself-adjoint and that it can result in an unexpected stiffening effect for a cantilever's fundamental vibration frequency with respect to increasing Eringen's small length scale coefficient. This is clearly inconsistent with the softening results of all other boundary conditions as well as the higher vibration modes of a cantilever beam. By using a (discrete) microstructured beam model, we demonstrate that the vibration frequencies obtained decrease with respect to an increase in the small length scale parameter. Furthermore, the microstructured beam model is consistently approximated by Eringen's nonlocal model for an equivalent set of beam equations in conjunction with variationally based boundary conditions (conservative elastic model). An equivalence principle is shown between the Hamiltonian of the microstructured system and the one of the nonlocal continuous beam system. We then offer a remedy for the special case of the cantilever beam by tweaking the boundary condition for the bending moment of a free end based on the microstructured model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.