During a 2018 outburst, the black hole X-ray binary MAXI J1820+070 was comprehensively monitored at multiple wavelengths as it underwent a hard to soft state transition. During this transition a rapid evolution in X-ray timing properties and a short-lived radio flare were observed, both of which were linked to the launching of bi-polar, long-lived relativistic ejecta. We provide detailed analysis of two Very Long Baseline Array observations, using both time binning and a new dynamic phase centre tracking technique to mitigate the effects of smearing when observing fast-moving ejecta at high angular resolution. We identify a second, earlier ejection, with a lower proper motion of 18.0 ± 1.1 mas day−1. This new jet knot was ejected 4 ± 1 hours before the beginning of the rise of the radio flare, and 2 ± 1 hours before a switch from type-C to type-B X-ray quasi-periodic oscillations (QPOs). We show that this jet was ejected over a period of ∼6 hours and thus its ejection was contemporaneous with the QPO transition. Our new technique locates the original, faster ejection in an observation in which it was previously undetected. With this detection we revised the fits to the proper motions of the ejecta and calculated a jet inclination angle of (64 ± 5)○, and jet velocities of $0.97_{-0.09}^{+0.03}c$ for the fast-moving ejecta (Γ > 2.1) and (0.30 ± 0.05)c for the newly-identified slow-moving ejection (Γ = 1.05 ± 0.02). We show that the approaching slow-moving component is predominantly responsible for the radio flare, and is likely linked to the switch from type-C to type-B QPOs, while no definitive signature of ejection was identified for the fast-moving ejecta.
Tracking the motions of transient jets launched by low-mass X-ray binaries (LMXBs) is critical for determining the moment of jet ejection, and identifying any corresponding signatures in the accretion flow. However, these jets are often highly variable and can travel across the resolution element of an image within a single observation, violating a fundamental assumption of aperture synthesis. We present a novel approach in which we directly fit a single time-dependent model to the full set of interferometer visibilities, where we explicitly parameterise the motion and flux density variability of the emission components, to minimise the number of free parameters in the fit, while leveraging information from the full observation. This technique allows us to detect and characterize faint, fast-moving sources, for which the standard time binning technique is inadequate. We validate our technique with synthetic observations, before applying it to three Very Long Baseline Array (VLBA) observations of the black hole candidate LMXB MAXI J1803−298 during its 2021 outburst. We measured the proper motion of a discrete jet component to be 1.37 ± 0.14 mas hr−1, and thus we infer an ejection date of MJD $59348.08_{-0.06}^{+0.05}$, which occurs just after the peak of a radio flare observed by the Australia Telescope Compact Array (ATCA) and the Atacama Large Millimeter/Sub-Millimeter Array (ALMA), while MAXI J1803−298 was in the intermediate state. Further development of these new VLBI analysis techniques will lead to more precise measurements of jet ejection dates, which, combined with dense, simultaneous multi-wavelength monitoring, will allow for clearer identification of jet ejection signatures in the accretion flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.