We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10-100 µeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the detection concept, and present design prescriptions to optimize detection capabilities. We describe the design and realization of a first small-scale prototype of this concept, called Relic Axion Detector Exploratory Setup (RADES). It consists of a copper-coated stainless steel five-cavities microwave filter with the detecting mode operating at around 8.4 GHz. This structure has been electromagnetically characterized at 2 K and 298 K, and it is now placed in ultra-high vacuum in one of the twin-bores of the 9 T CAST dipole magnet at CERN. We describe the data acquisition system developed for relic axion detection, and present preliminary results of the electromagnetic properties of the microwave filter, which show the potential of filters to reach QCD axion window sensitivity at X-band frequencies.
Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy.
A search for massive neutrinos has been made in the decay π þ → e þ ν. No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (π → e þ ν h ).Upper limits (90% C.L.) on the neutrino mixing matrix element jU ei j 2 in the neutrino mass region 60-135 MeV=c 2 were set and are an order of magnitude improvement over previous results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.