The catecholamine release-inhibitory catestatin [Cts; human chromogranin (Cg) A(352-372), bovine CgA(344-364)] is a vasoreactive and anti-hypertensive peptide derived from CgA. Using the isolated avascular frog heart as a bioassay, in which the interactions between the endocardial endothelium and the subjacent myocardium can be studied without the confounding effects of the vascular endothelium, we tested the direct cardiotropic effects of bovine Cts and its interaction with beta-adrenergic (isoproterenol, ISO) and endothelin-1 (ET-1) signaling. Cts dose-dependently decreased stroke volume and stroke work, with a threshold concentration of 11 nM, approaching the in vivo level of the peptide. Cts reduced contractility by inhibiting phosphorylation of phospholamban (PLN). Furthermore, the Cts effect was abolished by pretreatment with either nitric oxide synthase (N(G)-monomethyl-l-arginine) or guanylate cyclase (ODQ) inhibitors, or an ET(B) receptor (ET(BR)) antagonist (BQ-788). Cts also noncompetitively inhibited the positive inotropic action of ISO. In addition, Cts inhibited the positive inotropic effect of ET-1, mediated by ET(A) receptors, and did not alter the negative inotropic ET-1 influence mediated by ET(BR). Cts action through ET(BR) was further suggested when, in the presence of BQ-788, Cts failed to inhibit the positive inotropism of both ISO and ET-1 stimulation and PLN phosphorylation. We concluded that the cardiotropic actions of Cts, including the beta-adrenergic and ET-1 antagonistic effects, support a novel role of this peptide as an autocrine-paracrine modulator of cardiac function, particularly when the stressed heart becomes a preferential target of both adrenergic and ET-1 stimuli.
Taken together, our findings provide functional evidence for beta3-AR modulation of ventricular relaxation in the rat heart which involves PTx-sensitive inhibitory Gi protein and occurs via an NO-cGMP-PKG cascade. Whether the effects of beta3-AR stimulation on lusitropism are beneficial or detrimental remains to be established.
An in vitro isolated working frog heart (Rana esculenta) was used to study the effects of exogenous CGA(1-76) (vasostatin 1), CGA(1-113) (vasostatin 2), and the synthetic CGA(7-57) on cardiac performance. Under basal cardiac conditions, the dose-response curves of the three peptides from 10(-8) to 10(-7) M showed a significant calcium-dependent negative inotropism that involved neither the endocardial endothelium nor the adrenergic and muscarinic receptors. In addition, the CgA fragments clearly counteracted the typical positive inotropism of isoprenaline (10(-<9) M). Taken together, these results provide the first evidence for a cardio-suppressive role for the vasostatins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.