Sphingomyelin (SM) is the most prevalent sphingolipid in the majority of mammalian membranes. Proton and 31P nuclear magnetic resonance spectral data were acquired to establish the nature of intra- and intermolecular H-bonds in the monomeric and aggregated forms of SM and to assess possible differences between this lipid and dihydrosphingomyelin (DHSM), which lacks the double bond between carbons 4 and 5 of the sphingoid base. The spectral trends suggest the formation of an intramolecular H-bond between the OH group of the sphingosine moiety and the phosphate ester oxygen of the head group. The narrower linewidth and the downfield shift of the resonance corresponding to OH proton in SM suggest that this H-bond is stronger in SM than in DHSM. The NH group appears to be involved predominantly in intramolecular H-bonding in the monomer. As the concentration of SM increases and the molecules come in closer proximity, these intramolecular bonds are partially disrupted and the NH group becomes involved in lipid-water interactions. The difference between the SM and DHSM appears to be not in the nature of these interactions but rather in the degree to which these intermolecular interactions prevail. As SM molecules cannot come as close together as DHSM molecules can, both the NH and OH moieties remain, on average, more intramolecularly bonded as compared to DHSM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.