The Schmidt number, defined as the ratio of scalar to momentum diffusivity, varies by multiple orders of magnitude in real world flows, with large differences in scalar diffusivity between temperature, solute, and sediment driven flows. This is especially crucial in gravity currents, where the flow dynamics may be driven by differences in temperature, solute, or sediment, and yet the effect of Schmidt number on the structure and dynamics of gravity currents is poorly understood. Existing numerical work has typically assumed a Schmidt number near unity, despite the impact of Schmidt number on the development of fine-scale flow structure. The few numerical investigations considering high Schmidt number gravity currents have relied heavily on two-dimensional simulations when discussing Schmidt number effects, leaving the effect of high Schmidt number on three-dimensional flow features unknown. In this paper, three-dimensional direct numerical simulations of constant-influx solute-based gravity currents with Reynolds numbers 100 ≤ Re ≤ 3000 and Schmidt number 1 are presented, with the effect of Schmidt number considered in cases with (Re, Sc) = (100, 10), (100, 100), and (500, 10). This data is used to establish the effect of Schmidt number on different properties of gravity currents, such as density distribution and interface stability. It is shown that increasing Schmidt number from 1 leads to substantial structural changes not seen with increased Reynolds number in the range considered here. Recommendations are made regarding lower Schmidt number assumptions, usually made to reduce computational cost.
Density driven flows, also known as gravity currents, comprise a head, body, and tail. Yet whilst the body typically forms the largest part of such flows, its structure remains poorly understood. In this work, experimental data gathered using particle image velocimetry enables the instantaneous, whole-field dynamics of constant-influx solute-based gravity currents to be resolved. While averaged turbulent kinetic energy profiles are comparable to previous work, the instantaneous data sets reveal significant temporal variation, with velocity measurements indicating large-scale wave-like motions within the body. Spectral analysis and dynamic mode decomposition, of streamwise and vertical velocity, are used to identify the frequencies and structures of the dominant motions within the flow. By considering an idealised theoretical density profile, it is suggested that these structures may be internal gravity waves that form a critical layer within the flow located at the height of the maximum internal velocity. Irreversible internal wave breaking that has been postulated to occur at this critical layer suggests formation of internal eddy transport barriers, demonstrating that new dynamic models of turbulent mixing in gravity currents are needed. Graphic abstract
Flow in the body of gravity currents is typically assumed to be statistically two-dimensional, and cross-stream flow is often neglected (Simpson 1997; Meiburg et al. 2015). Here, we assess the validity of such assumptions using Shake-the-Box particle tracking velocimetry measurements of experimental gravity current flows. The resulting instantaneous, volumetric, whole-field velocity measurements indicate that cross-stream and vertical velocities (and velocity fluctuations) are equivalent in magnitude and thus are key to energy distribution and dissipation within the flow. Further, the presented data highlight the limitations of basing conclusions regarding body structure on a single cross-stream plane (particularly if that plane is central). Spectral analysis and dynamic mode decomposition of the fully three-dimensional, volumetric velocity data suggests internal waves within the current body that are associated with coherent three-dimensional motions in higher Reynolds number flows. Additionally, a potential critical layer at the height of the downstream velocity maximum is identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.