Antiprotons are produced at CERN by colliding a 26 GeV=c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000°C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of end-ofpulse tensile waves and its relevance on the overall response (iii) A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.
This study presents a further step within the ongoing R&D activities for the redesign of the CERN's Antiproton Decelerator Production Target (AD-Target). A first scaled target prototype, constituted of a sliced core made of ten Ta rods −8 mm diameter, 16 mm length-embedded in a compressed expanded graphite (EG) matrix, inserted in a 44 mm diameter Ti-6Al-4V container, has been built and tested under proton beam impacts at the CERN's HiRadMat facility, in the so called HRMT-42 experiment. This prototype has been designed following the lessons learned from previous numerical and experimental works (HRMT-27 experiment) aiming at answering the open questions left in these studies. Velocity data recorded on-line at the target periphery during the HRMT-42 experiment is presented, showing features of its dynamic response to proton beam impacts. Furthermore, x-ray and neutron tomographies of the target prototype after irradiation have been performed. These non-destructive techniques show the extensive plastic deformation of the Ta core, but suggest that the EG matrix can adapt to such deformation, which is a positive result. The neutron tomography successfully revealed the internal state of the tantalum core, showing the appearance of voids of several hundreds of micrometers, in particular in the downstream rods of the core. The possible origin of such voids is discussed while future microstructure analysis after the target opening will try to clarify their nature.
The HRMT27-RodTarg experiment employed the HiRadMat facility at CERN to impact intense 440 GeV proton beams onto thin rods 8 mm in diameter, 140 mm in length, and made of high-density materials such as Ir, W, Ta, Mo, and alloys. The purpose of the experiment was to reduce uncertainties on the CERN antiproton target material response and assess the material selection for its future redesign. The experiment was designed to recreate the extreme conditions reached in the production target, estimated in an increase of temperature above 2000°C in less than 0.5 μs and a subsequent compressive-to-tensile pressure wave of several gigapascals. The goals of the experiment were (i) to validate the hydrocode calculations used for the prediction of the antiproton target response and (ii) to identify limits and failure mechanisms of the materials of interest. In order to accomplish these objectives, the experiment relied on extensive instrumentation (pointing at the target rod surfaces). This paper presents a detailed description of the experiment as well as the recorded online results which showed that most of the investigated materials suffered internal damage from conditions 5-7 times below the ones present in the AD target. Tantalum, on the other hand, apparently withstood the most extreme conditions without presenting internal cracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.