Abstract. On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, threedimensional ion distribution of the major magnetospheric ions (H + , He + , He ++ , and O + ) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5 • ) angular resolution, and a Hot Ion AnalCorrespondence to: H. Rème (Henri.Reme@cesr.fr) yser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6 • ) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range.
International audienceThe MAVEN spacecraft launched in November 2013, arrived at Mars in September 2014, and completed commissioning and began its one-Earth-year primary science mission in November 2014. The orbiter’s science objectives are to explore the interactions of the Sun and the solar wind with the Mars magnetosphere and upper atmosphere, to determine the structure of the upper atmosphere and ionosphere and the processes controlling it, to determine the escape rates from the upper atmosphere to space at the present epoch, and to measure properties that allow us to extrapolate these escape rates into the past to determine the total loss of atmospheric gas to space through time. These results will allow us to determine the importance of loss to space in changing the Mars climate and atmosphere through time, thereby providing important boundary conditions on the history of the habitability of Mars. The MAVEN spacecraft contains eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space. In addition, it contains an Electra relay that will allow it to relay commands and data between spacecraft on the surface and Earth
Abstract. The Electron Reflectometer (ER) on board Mars Global Surveyor measures the energy and angular distributions of solar wind electrons and ionospheric photoelectrons. These data can be used in conjunction with magnetometer data to probe Mars' crustal magnetic field and to study Mars' ionosphere and solar wind interaction. During aerobraking, ionospheric measurements were obtained in the northern hemisphere at high solar zenith angles (SZAs, typically -78ø). The ionopause was crossed at altitudes ranging from 180 km to over 800 km, with a median of 380 km. The 400-km-altitude polar mapping orbit allows observations at SZAs from 25 ø to 155 ø in both the northern and southern hemispheres. The near-planet ionosphere and magnetotail structure of the night hemisphere is dominated by the presence of intense crustal magnetic fields, which can exceed 200 nT at the spacecraft altitude. Closed field lines anchored to highly elongated crustal sources form "magnetic cylinders," which exclude solar wind plasma traveling up the magnetotail. When the spacecraft passes through one of these structures, the ER count rate falls to the instrumental background, representing an electron flux drop of at least two orders of magnitude. A map of these flux dropouts in longitude and latitude closely resembles a map of the crustal magnetic sources. When the crustal magnetic cylinders rotate into sunlight, they fill with ionospheric plasma. Since many of these crustal fields are locally strong enough to stand off the solar wind to altitudes well above 400 km, the ionosphere can extend much higher than would otherwise be possible in the absence of crustal fields. Even weak crustal fields may locally bias the median ionopause altitude, which provides an indirect method of detecting crustal fields using ER observations.
We report on the in‐flight performance of the Solar Wind Ion Analyzer (SWIA) and observations of the Mars‐solar wind interaction made during the Mars Atmosphere and Volatile EvolutioN (MAVEN) prime mission and a portion of its extended mission, covering 0.85 Martian years. We describe the data products returned by SWIA and discuss the proper handling of measurements made with different mechanical attenuator states and telemetry modes, and the effects of penetrating and scattered backgrounds, limited phase space coverage, and multi‐ion populations on SWIA observations. SWIA directly measures solar wind protons and alpha particles upstream from Mars. SWIA also provides proxy measurements of solar wind and neutral densities based on products of charge exchange between the solar wind and the hydrogen corona. Together, upstream and proxy observations provide a complete record of the solar wind experienced by Mars, enabling organization of the structure, dynamics, and ion escape from the magnetosphere. We observe an interaction that varies with season and solar wind conditions. Solar wind dynamic pressure, Mach number, and extreme ultraviolet flux all affect the bow shock location. We confirm the occurrence of order‐of‐magnitude seasonal variations of the hydrogen corona. We find that solar wind Alfvén waves, which provide an additional energy input to Mars, vary over the mission. At most times, only weak mass loading occurs upstream from the bow shock. However, during periods with near‐radial interplanetary magnetic fields, structures consistent with Short Large Amplitude Magnetic Structures and their wakes form upstream, dramatically reconfiguring the Martian bow shock and magnetosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.