The cDNA for the full-length core protein of the small chondroitin sulphate proteoglycan II of bovine bone was cloned and sequenced. A 1.3 kb clone (lambda Pg28) was identified by plaque hybridization with a previously isolated 1.0 kb proteoglycan cDNA clone (lambda Pg20), positively identified previously by polyclonal and monoclonal antibody reactivity and by hybrid-selected translation in vitro [Day, Ramis, Fisher, Gehron Robey, Termine & Young (1986) Nucleic Acids Res. 14, 9861-9876]. The cDNA sequences of both clones were identical in areas of overlap. The 360-amino-acid-residue protein contains a 30-residue propeptide of which the first 15 residues are highly hydrophobic. The mature protein consists of 330 amino acid residues corresponding to an Mr of 36,383. The core protein contains three potential glycosaminoglycan-attachment sites (Ser-Gly), only one of which is within a ten-amino-acid-residue homologous sequence seen at the known attachment sites of related small proteoglycans. Comparisons of the published 24-residue N-terminal protein sequence of bovine skin proteoglycan II core protein with the corresponding region in the deduced sequence of the bovine core protein reveals complete homology. Comparison of the cDNA-derived sequences of bovine bone and human embryonic fibroblast proteoglycans shows a hypervariable region near the N-terminus. Nucleotide homology between bone and fibroblast core proteins was 87% and amino acid homology was 90%.
Molecular cloning of a bovine amelogenin cDNA was accomplished by construction of a cDNA expression library (λgt11 cDNA library) from the bovine ameloblast mRNA and then screening of the library with antibodies to bovine amelogenins. The complete primary structure of an amelogenin was deduced from cloned cDNA. One of the cDNA clones isolated from a bovine ameloblast phage λgt11 library had an 864-base-pair-long insert that encoded a protein with 216 amino acid residues. This cDNA clone appears to represent the complete coding region of amelogenin mRNA, including a putative AUG initiation codon and a signal peptide sequence. The predicted bovine amelogenin sequence has 87% amino acid homology with murine amelogenin.
We describe a new subfamily of human satellite III DNA that is represented on two different acrocentric chromosomes. This DNA is composed of a tandemly repeated array of diverged 5-base-pair monomer units of the sequence GGAAT or GGAGT. These monomers are organised into a 1.37-kilobase higher-order structure that is itself tandemly reiterated. Using a panel of somatic cell hybrids containing specific human chromosomes, this higher-order structure is demonstrated on chromosomes 14 and 22, but not on the remaining acrocentric chromosomes. In situ hybridisation studies have localised the sequence to the proximal p-arm region of these chromosomes. Analysis by pulsed-field gel electrophoresis (PFGE) reveals that 70-110 copies of the higher-order structure are tandemly organised on a chromosome into a major domain which appears to be flanked on both sides by non-tandemly repeated genomic DNA. In addition, some of the satellite III sequences are interspersed over a number of other PFGE fragments. This study provides fundamental knowledge on the structure and evolution of the acrocentric chromosomes, and should extend our understanding of the complex process of interchromosomal interaction which may be responsible for Robertsonian translocation and meiotic nondisjunction involving these chromosomes.
A cDNA encoding osteonectin was isolated from a human bone cell cDNA library and used to examine osteonectin protein structure, mRNA structure and expression in human tissue. The deduced protein sequence shows complete identity with a recently isolated placental form and extensive homology to mouse and bovine counterparts. The protein is rich in cysteine residues, which are conserved between species except for cys 194 which is only present in the bovine. In the human, osteonectin mRNA is of two sizes, 2.3 and 3.0 kb, the former being dominant in all tissues studied. Human mRNA was detected in the Ewing sarcoma and in nonbone cell and tissue sources. The potential folded structure of osteonectin mRNA was estimated, based on computer predictions, and indicates the presence of a bulge at the 5' end of the message which includes the start of translation. Southern analysis of human genomic DNA using radiolabeled osteonectin cDNA as probe demonstrates a simple banding pattern confirming earlier studies that the osteonectin gene is present in one copy per haploid human genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.