Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how ultralow frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on 22 September 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground-and space-based observational data and global magnetohydrodynamic simulations and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. Magnetohydrodynamic simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfvén modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by phase space density calculations for this global recovery period.
This paper presents some parameters of negative cloud‐to‐ground lightning flashes in terms of frequency distribution. All data are based on so‐called “accurate‐stroke‐count studies” from different climatological regions in the world and were already published in the literature with the exception of our measurements. We used GPS synchronized data from two digital high‐speed cameras (at 1–8,000 frames/sec). The parameters considered in this study are: (1) continuing current duration, (2) time intervals between strokes, (3) number of strokes per flash and (4) total flash duration. The analysis includes Berger's data of Monte San Salvatore (Switzerland), which is the basis for lightning protection standards. The comparison suggests that despite of overall agreement of those parameters that some of them, currently used in protection standards, should be revised in order to be more realistic.
In this study we examine the recovery of relativistic radiation belt electrons on 15–16 November 2014, after a previous reduction in the electron flux resulting from the passage of a corotating interaction region (CIR). Following the CIR, there was a period of high‐speed streams characterized by large, nonlinear fluctuations in the interplanetary magnetic field (IMF) components. However, the outer radiation belt electron flux remained at a low level for several days before it increased in two major steps. The first increase is associated with the IMF background field turning from slightly northward on average to slightly southward on average. The second major increase is associated with an increase in the solar wind velocity during a period of southward average IMF background field. We present evidence that when the IMF Bz is negative on average, the whistler mode chorus wave power is enhanced in the outer radiation belt, and the amplification of magnetic integrated power spectral density in the ULF frequency range, in the nightside magnetosphere, is more efficient as compared to cases in which the mean IMF Bz is positive. Preliminary analysis of the time evolution of phase space density radial profiles did not provide conclusive evidence on which electron acceleration mechanism is the dominant. We argue that the acceleration of radiation belt electrons requires (i) a seed population of keV electrons injected into the inner magnetosphere by substorms and both (ii) enhanced whistler mode chorus waves activity as well as (iii) large‐amplitude MHD waves.
Following the arrival of two interplanetary coronal mass ejections on 2014 September 12, the Relativistic Electron-Proton Telescope instrument on board the twin Van Allen Probes observed a long-term dropout in the outer belt electron fluxes. The interplanetary shocks compressed the magnetopause, thereby enabling the loss of relativistic electrons in the outer radiation belt to the magnetosheath region via the magnetopause shadowing. Previous studies have invoked enhanced radial transport associated with ultra-low-frequency waves activity and/or scattering into the atmosphere by whistler mode chorus waves to explain electron losses deep within the magnetosphere (L<5.5). We show that energetic electron pitch angle distributions (PADs) provide strong evidence for precipitation also via interaction with electromagnetic ion cyclotron (EMIC) waves. High-resolution magnetic field observations on Van Allen Probe B confirm the sporadic presence of EMIC waves during the most intense dropout phase on September 12. Observational results suggest that magnetopause shadowing and EMIC waves together were responsible for reconfiguring the relativistic electron PADs into peculiar butterfly PAD shapes a few hours after an interplanetary shock arrived at Earth.
The coupling response between solar wind structures and the magnetosphere is highly complex, leading to different effects in the outer radiation belt electron fluxes. Most Coronal Mass Ejections cause strong geomagnetic storms with short recovery phases, often 1–2 days. By contrast, High‐Speed Solar Wind Streams lead to moderate and weak storms often with much longer recovery phases, from several to ∼10 days. The magnetosphere receives energy for a long time under the influence of the HSSs, considerably changing its dynamics. This in turn has an effect on the charged particles trapped in the outer radiation belt. Although the high‐energy electron flux enhancements have received considerable attention, the high‐energy electron flux enhancement pattern (L > 4) has not. This paper identifies 37 events with this enhancement pattern in the high‐energy electron flux during the Van Allen Probes era. We find the enhancements coincident with HSS occurrence. The interplanetary magnetic field (IMF) exhibits north/south Bz fluctuations of Alfvénic nature with moderate amplitudes. The high‐energy electron flux enhancements also correspond to long periods of auroral activity indicating a relationship to magnetotail dynamics. However, the AE index only reaches moderate values. Ultra‐Low Frequency waves were present in all of the events and whistler‐mode chorus waves were present in 89.1% of the events, providing a convenient scenario for wave‐particle interactions. The radial gradient of the ULF wave power related to the L, under the influence of the HSSs, is necessary to trigger the physical processes responsible for this type of high‐energy electron flux enhancement pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.