It is well known that ocean-atmosphere dynamic affects the weather conditions over the continents and the ocean itself. The hydrologic cycle is driven by climatic parameters like precipitation, temperature, evaporation, winds and humidity. Hence, the river's water discharges and lake water level variations are impelled by climatic conditions also. Lake Izabal is the largest one in Guatemala; its main tributary is the Polochic River. Its level is related to the Polochic Rivers runoff and therefore to the precipitation/evaporation over its catchment area. The Lake Izabal water level fluctuations are driven by the annual cycle of rainy and dry seasons. In this study the ENVISAT RA-2 Geophysical Data Records orbits over the lake, coupled with in-situ measurements are used in order to determine and characterize the lake level fluctuations. The precipitation records over the lake's catchment area are also analyzed. In addition, some relationships of the lake level interannual variations with the climate indexes of Southern Oscillation Index SOI and the Tropical North Atlantic NATL were investigated. The main result is that the abrupt lake level rise in July 2006 is correlated to an abnormal precipitation in June 2006. Theoretically, this was forced by "La Niña" Southern Oscillation events during early 2006.
The surface extent of a lake reflects its water storage variations. This information has important hydrological and operational applications. However, there is a lack of information regarding this subject because the traditional methodologies for this purposes (ground surveys, aerial photos) requires high resources investments. Remote sensing techniques (optical/radar sensors) permit a low cost, constant and accurate monitoring of this parameter. The objective of this study was to determine the surface variations of Lake Izabal, the largest one in Guatemala. The lake is located close to the Caribbean Sea coastline. The climate in the region is predominantly cloudy and rainy, being the Synthetic Aperture Radar (SAR) the best suited sensor for this purpose. Although several studies have successfully used SAR products in detecting land-water boundaries, all of them highlighted some sensor limitations. These limitations are mainly caused by roughened water surfaces caused by strong winds which are frequent in Lake Izabal. The ESA's ASAR data products were used. From the set of 9 ASAR images used, all of them have wind-roughened ashore waters in several levels. Here, a chain of image processing steps were applied in order to extract a reliable shoreline. The shoreline detection is the key task for the surface estimation. After the shoreline extraction, the inundated area of the lake was estimated. In-situ lake level measurements were used for validation. The results showed good agreement between the inundated areas estimations and the lake level gauges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.