Abstract. We present submillimetre observations obtained using the balloon-borne experiment PRONAOS/SPM, from 200 to 600 µm with an angular resolution of 2-3.5 , of a quiescent dense filament (typically A V ∼ 4) in the Taurus molecular complex. This filament, like many other molecular clouds, presents a deficit in its IRAS I 60 µm /I 100 µm flux ratio in comparison with the diffuse interstellar medium. We show, from the combination of the PRONAOS/SPM and IRAS data, that, inside the filament, there is no evidence for emission from the transiently heated small particles responsible for the 60 µm emission, and that the temperature of large grains in thermal equilibrium with the radiation field is reduced in the inner parts of the filament. The temperature is as low as 12.1 +0.2 −0.1 K with β = 1.9 ± 0.2 (or 12.0 +0.2 −0.1 K using β = 2) toward the filament centre. These phenomena are responsible for the IRAS colour ratio observed toward the filament. In order to explain this cold temperature, we have developed a model for the emission from the filament using star counts from the 2MASS catalog as an independent tracer of the total column density and a radiative transfer code. We first use the optical properties of the dust from the standard model of Désert et al. (1990). The computed brightness profiles fail to reproduce the data inside the filament, showing that the dust properties change inside the filament. An agreement between data and model can be found by removing all the transiently heated particles from the densest parts of the filament, and multiplying the submillimetre emissivity by a significant factor, 3.4 +0.3 −0.7 (for typically n H > 3 ± 1 × 10 3 cm −3 , A V > 2.1 ± 0.5). We show that grain-grain coagulation into fluffy aggregates may occur inside the filament, explaining both the deficit of small grain abundance and the submillimetre emissivity enhancement of the large grains.
Abstract. We present a compilation of PRONAOS-based results concerning the temperature dependence of the dust submillimeter spectral index, including data from Galactic cirrus, star-forming regions, dust associated to a young stellar object, and a spiral galaxy. We observe large variations of the spectral index (from 0.8 to 2.4) in a wide range of temperatures (11 to 80 K). These spectral index variations follow a hyperbolic-shaped function of the temperature, high spectral indices (1.6-2.4) being observed in cold regions (11-20 K) while low indices (0.8-1.6) are observed in warm regions (35-80 K). Three distinct effects may play a role in this temperature dependence: one is that the grain sizes change in dense environments, another is that the chemical composition of the grains is not the same in different environments, a third one is that there is an intrinsic dependence of the dust spectral index on the temperature due to quantum processes. This last effect is backed up by laboratory measurements and could be the dominant one.
ABSTRACT. Hi-GAL, the Herschel infrared Galactic Plane Survey, is an Open Time Key Project of the Herschel Space Observatory. It will make an unbiased photometric survey of the inner Galactic plane by mapping a 2°wide strip in the longitude range |l| < 60°in five wavebands between 70 μm and 500 μm. The aim of Hi-GAL is to detect the earliest phases of the formation of molecular clouds and high-mass stars and to use the optimum combination of Herschel wavelength coverage, sensitivity, mapping strategy, and speed to deliver a homogeneous census of starforming regions and cold structures in the interstellar medium. The resulting representative samples will yield the variation of source temperature, luminosity, mass and age in a wide range of Galactic environments at all scales from massive YSOs in protoclusters to entire spiral arms, providing an evolutionary sequence for the formation of intermediate and high-mass stars. This information is essential to the formulation of a predictive global model of the role of environment and feedback in regulating the star-formation process. Such a model is vital to understanding star formation on galactic scales and in the early universe. Hi-GAL will also provide a science legacy for decades to come with incalculable potential for systematic and serendipitous science in a wide range of astronomical fields, enabling the optimum use of future major facilities such as JWST and ALMA.
Aims. We propose a new description of astronomical dust emission in the spectral region from the far-infrared to millimeter wavelengths. Methods. Unlike previous classical models, this description explicitly incorporates the effect of the disordered internal structure of amorphous dust grains. Our model is based on results from solid state physics used to interpret laboratory data. The model takes into account the effect of absorption by disordered charge distribution, as well as the effect of absorption by localized two level systems. Results. We review constraints on the various free parameters of the model from theory and laboratory experimental data. We show that, for realistic values of the free parameters, the shape of the emission spectrum will exhibit very broad structures whose shape will change in a non trivial way with the temperature of dust grains. The spectral shape also depends upon the parameters describing the internal structure of the grains. This opens new perspectives for identifying the nature of astronomical dust from the observed shape of the FIR/mm emission spectrum. A companion paper will provide an explicit comparison of the model with astronomical data.
Context. Cold dust grains are responsible for the far-infrared and submillimetre (FIR/submm) emission observed by Herschel and Planck. Their thermal emission is usually expressed as a modified black body law in which the FIR/submm dust opacity, or mass absorption coefficient (MAC), is described by the MAC at a given wavelength κ λ 0 and the temperature-and wavelength-independent emissivity spectral index β. However, numerous data from previous space and balloon-borne missions and recently from Herschel and Planck show that the dust emission is not well understood, as revealed for example by the observed anti-correlation of β with the grain temperature. Aims. The aim of this work is to measure the optical properties of interstellar dust analogues at low temperatures to give astronomers the necessary data for interpreting FIR/submm observations such as those from the Herschel and Planck satellites. Methods. We synthesised, via sol-gel methods, analogues of interstellar amorphous silicate grains, rich in Mg and Ca, and having stoichiometry of olivine and pyroxene. The samples are characterised by various techniques to determine their composition, size, amorphisation degree. All the amorphous samples are annealed at 1100• C to study the crystallised materials for comparison. We measured the MAC of all the samples in the 2-25 μm range at room temperature and in the 100-1000/1500 μm range for grain temperatures varying from 300 to 10 K. Results. The experimental results show that, for all the amorphous samples, the grain MAC decreases when the grain temperature decreases and that the local spectral index, β, defined as the slope of the MAC curve, is anti-correlated with the grain temperature. These variations, which are not observed in the crystallised samples, are related to the amorphous nature of the samples. In addition, the spectral shape of the MAC is complex and cannot be described by a single spectral index over the 100-1500 μm range. At short wavelengths (λ ≤ 500/700 μm), β is in the range 1.6-2.1 for all grain temperature and grain composition. However, at longer wavelengths (λ ≥ 500/700 μm), β ≤ 2 for samples with a pyroxene stoichiometry and β ≥ 2 for samples with an olivine stoichiometry. Conclusions. The dust properties in the FIR/submm domain and at low temperature are more complicated than expected. The simplifying asymptotic expression based on a single temperature-and wavelength-independent spectral index used by astronomers is not appropriate to describe the dust MAC, hence the dust emission, and may induce significant errors on the derived parameters, such as the dust mass and the dust physical and chemical properties. Instead, dust emission models should use the dust MAC as a function of wavelength and temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.