Dystonic storm or status dystonicus is a life-threatening hyperkinetic movement disorder with biochemical alterations due to the excessive muscle contractions. The medical management can require pediatric intensive care unit admission and a combination of medications while the underlying trigger is managed. Severe cases may require general anesthesia and paralytic agents with intubation and may relapse when these drugs are weaned. Deep brain stimulation of the globus pallidum has been reported to terminate dystonic storm in several pediatric cases. We present a 10-year-old boy with a de novo GNAO1 mutation-induced dystonic storm who required a 2-month pediatric intensive care unit admission and remained refractory to all medical treatments. Deep brain stimulation was performed under general anesthetic without complication. His dyskinetic movements stopped with initiation of stimulation. He was discharged from the pediatric intensive care unit after 4 days. We present prospectively evaluated changes in dystonia symptoms and quality of life for a patient with GNAO1 mutation treated with deep brain stimulation.
The treatment of neuropathic pain remains a public health concern. A growing cohort of patients is plagued by medically refractory, unrelenting severe neuropathic pain that ruins their quality of life and productivity. For this group, neurosurgery can offer two different kinds of neuromodulation that may help: deep brain simulation (DBS) and motor cortex stimulation (MCS). Unfortunately, there is no consensus on how to perform these procedures, which stimulation parameters to select, how to measure success, and which patients may benefit. This brief review highlights the literature supporting each technique and attempts to provide some comparisons and contrasts between DBS and MCS for the treatment of neuropathic pain. Finally, we highlight the current unanswered questions in the field and suggest future research strategies that may advance the care of our patients with neuropathic pain.
BackgroundThe Canada Health Act requires reasonable access to all medically necessary therapies. No information is available to assess the current access to neuromodulation across Canada. This study quantifies the current rate of deep brain stimulation (DBS) for the entire country of Canada. Analyses were performed to determine whether there were differences in access based on provincial or territorial location, rural or non-rural region, or socioeconomic status.MethodsAll implanted DBS devices in Canada over a 2-year epoch (January 2015 to December 2016) were supplied by either Boston Scientific or Medtronic. Investigators received anonymized data from these companies, including patient age and home residence region. The 2016 Statistics Canada census data were used to determine the rate of DBS surgery and whether access was related to provincial location, rural versus non-rural region or socioeconomic status.ResultsA total of 722 patients were studied. The rate of DBS surgery for the entire country was ten per million population per year. Saskatchewan was significantly above (374%) the national average, whereas Quebec (40%) and Newfoundland & Labrador (32%) were significantly below the national average. No patients from the three territories received DBS. There were no significant differences in access from rural versus non-rural areas or in regions within provinces with different socioeconomic status.ConclusionsThis is the first study to quantify all patients receiving DBS within an entire country. The current rate of DBS surgery within Canada is ten cases per million per year. Statistically significant regional differences were discovered and discussed.
SUMMARY: Dynamic MR imaging was used to evaluate a cervical syrinx in an adolescent boy with an associated hindbrain herniation. Null artifacts were present on one of the sequences that allowed simultaneous high-resolution visualization of syrinx fluid motion and the anatomy of the syrinx walls. A brief review of the theories of syrinx formation and propagation is provided with a comment on why the Williams "slosh" theory of syrinx progression is supported by our unique imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.