This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L(-1)) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe(2+)](0) = 5 mg L(-1); [H(2)O(2)](0) = 75 mg L(-1)) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m(3) day(-1) of secondary wastewater effluent was found to be 0.85 € m(-3).
The capability of a moving bed biofilm reactor (MBBR) to remove the iodinated contrast media (ICM) iohexol (IOX) and diatrizoate (DTZ) from municipal wastewater was studied. A selected number of clones of microorganisms present in the biofilm were identified. Biotransformation products were tentatively identified and the toxicity of the treated effluent was assessed. Microbial samples were DNA-sequenced and subjected to phylogenetic analysis in order to confirm the identity of the microorganisms present and determine the microbial diversity. The analysis demonstrated that the wastewater was populated by a bacterial consortium related to different members of Proteobacteria, Firmicutes, and Nitrisporae. The optimum removal values of the ICM achieved were 79 % for IOX and 73 % for DTZ, whereas 13 biotransformation products for IOX and 14 for DTZ were identified. Their determination was performed using ultra-performance liquid chromatography-tandem mass spectrometry. The toxicity of the treated effluent tested to Daphnia magna showed no statistical difference compared to that without the addition of the two ICM. The MBBR was proven to be a technology able to remove a significant percentage of the two ICM from urban wastewater without the formation of toxic biodegradation products. A large number of biotransformation products was found to be formed. Even though the amount of clones sequenced in this study does not reveal the entire bacterial diversity present, it provides an indication of the predominating phylotypes inhabiting the study site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.