Plant derived pharmacologically active compounds have gained importance in food and pharmaceutical industries. The aim of the present study is to identify and study the antioxidant, antimicrobial properties of the phytochemicals present in the crude extract of Eugenia caryophyllus flower buds. The antioxidant activity of the methanol, acetone and chloroform extract was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The methanol extract showed better radical scavenging activity than other selected solvents. Preliminary screening of phytochemicals was carried out in methanol extract and total phenol content was found high. Antibacterial activity was determined by well diffusion assay and methanol extract was found effective against Klebsiella pneumonia. FTIR and GC-MS results indicate the presence of aromatic compounds and major constituents were found to be eugenol and eugenyl acetate. Results of this study implied that Eugenia caryophyllus flower bud extract could be considered as health nutriments in food and pharmaceutical industries.
In the present study, a new biofiltration system involving a selective microbial strain isolated from aerated municipal sewage water attached with coir as packing material was developed for toluene degradation. The selected fungal isolate was identified as Trichoderma asperellum by 16S ribosomal RNA (16S rRNA) sequencing method, and pylogenetic tree was constructed using BLASTn search. Effect of various factors on growth and toluene degradation by newly isolated T. asperellum was studied in batch studies, and the optimum conditions were found to be pH 7.0, temperature 30 °C, and initial toluene concentration 1.5 (v/v)%. Continuous removal of gaseous toluene was monitored in upflow packed bed reactor (UFPBR) using T. asperellum. Effect of various parameters like column height, flow rate, and the inlet toluene concentration were studied to evaluate the performance of the biofilter. The maximum elimination capacity (257 g m(-3) h(-1)) was obtained with the packing height of 100 cm with the empty bed residence time of 5 min. Under these optimum conditions, the T. asperellum showed better toluene removal efficiency. Kinetic models have been developed for toluene degradation by T. asperellum using macrokinetic approach of the plug flow model incorporated with Monod model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.