Existing acoustic test benches are usually costly devices based on proprietary designs, sensors, and acquisition devices. In this paper, a low-cost test bench for acoustic purposes is introduced. The design of the test bench takes into account not only the low-cost mechanical design, but also uses low-cost sensors and control boards. This test bench has been designed for a range of signals compatible with those used by thermoacoustic engines, but it can be useful for applications with similar requirements. Taking advantage of an auxiliary pressure reference, low-cost unidirectional differential pressure sensors can be used to significantly increase the accuracy of the sampling system. The acoustic and mechanical design and development are presented along with the sampling system and the sensors arrangement implemented. Both the sensor and sampling system are evaluated by comparison with a high-fidelity sound acquisition system. An unexpected effect on the time error values distribution of the low-cost acquisition system is found and described. Finally, the errors introduced by the system and the sensors in terms of time and pressure sampling are characterized. As a result, the low-cost system’s accuracy has been satisfactory assessed and validated for the conditions expected in thermoacoustic experiments in terms of frequency and dynamic pressure.
Abstract-A high fidelity nonlinear model of a sport motorcycle is modified to include interconnected suspension forces between the front and rear ends. The comfort and the suspensions efficiency have been studied for a wide range of interconnection stiffness and damping coefficients. An optimization of these coefficients is performed considering different possible mechanical implementations, going from a simple damping connection to full variable stiffness and damping coefficients depending on the speed. Finally the system is analyzed from the stability point of view to ensure that the oscillating modes are not strongly modified and the system stability is not compromised.
Energy harvesting shock absorbers (EHSA) have made great progress in recent years, although there are still no commercial solutions for this technology. This paper addresses the question of whether, and under what conditions, an EHSA can completely replace a conventional one. In this way, any conventional suspension could be replicated at will, while recovering part of the wasted energy. This paper focuses on mimicking the original passive damper behavior by continuously varying the electrical parameters of the regenerative damper. For this study, a typical ball-screw EHSA is chosen, and its equivalent suspension parameters are tried to be matched to the initial damper. The methodology proposes several electrical control circuits that optimize the dynamic behavior of the regenerative damper from the continuous variation of a load resistance. The results show that, given a target damper curve, the regenerative damper can adequately replicate it when there is a minimum velocity in the damper. However, when the damper velocity is close to zero, the only way to compensate for inertia is through the introduction of external energy to the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.