Only two avian oncogenic viruses specifically cause acute leukaemias yet do not transform chicken fibroblasts in culture: E26, which causes erythroblastosis and a low level of concomitant myeloblastosis in chickens, and avian myeloblastosis virus (AMV), which causes myeloblastosis exclusively. Both viruses are replication-defective and share a sequence termed myb (also known as amv) which is unrelated to essential virion genes and is therefore thought to be part of the transforming onc genes of these viruses. However, the genetic structure of the two viruses differs. E26 has a genomic RNA of 5.7 kilobases (kb) and encodes a 135,000 molecular weight gag-related protein (p135) with probable transforming function. We show here by in vitro translation that the 5.7-kb E26 RNA directs the synthesis of p135. Oligonucleotide analysis indicates that E26 RNA contains an internal 0.8-kb subset of the 1.2-kb AMV-related sequence (mybA), termed mybE. A 2.46-kb molecular clone prepared from cDNA transcribed in vitro from E26 RNA contained an E26 transformation-specific (ets) sequence flanked by mybE and an env-related sequence. A complete DNA sequence of this clone indicates that the 1.5-kb ets sequence extends the open reading frame of mybE for 491 amino acids. Thus, the p135 gene of E26 is a genetic hybrid of three distinct elements, approximately 1.2 kb derived from the 5' region of the retroviral gag gene, mybE and the ets sequence, linked in the order 5'-delta gag-mybE-ets-3'. The myeloid leukaemogenicity shared by E26 and AMV correlates with the common myb sequence, while the distinct erythroid leukaemogenicity of E26 correlates with ets and the E26-specific linkage of myb to delta gag.
The oncogenic properties and RNA of the Fujinami avian sarcoma virus (FSV) and the protein it encodes were investigated and compared to those of other avian tumor viruses with sarcomagenic properties such as Rous sarcoma virus and the acute leukemia viruses MC29 and erythroblastosis virus. Cloned stocks of FSV caused sarcomas in all chickens inoculated and were found to contain a 4.5-kilobase (kb) and an 8.5-kb RNA species. The 4.5-kb RNA was identified as the genome of defective FSV because it was absent from nondefective FSV-associated helper virus and because the titer of focusforming units increased with the ratio of 4.5-kb to 8.5-kb RNA in virus preparations. This is, then, the smallest known tumor virus RNA with a transforming function. Comparisons with other viral RNAs, based on oligonucleotide mapping and molecular hybridization, indicated that 4.5-kb FSV RNA contains a 5' gag gene-related sequence of 1 kb, an internal specific sequence of about 3 kb that is unrelated to Rous sarcoma virus, MC29, and erythroblastosis virus, and a 3'-terminal sequence of about 0.5 kb related to the conserved C region of avian tumor viruses. The lack of some or all nucleotide sequences of the essential virion genes, gag, pol, and env, and the isolation of FSV-transformed nonproducer cell clones indicated that FSV is replication defective. A 140,000-dalton, gag-related nonstructural protein was found in FSV-transformed producer and nonproducer cells and was translated in vitro from full-length FSV RNA. This protein is expected to have a transforming function both because its intracellular concentration showed a positive correlation with the percentage of transformed cells in a culture and because FSV is unlikely to code for major additional proteins since the genetic complexities of FSV RNA and the FSV protein are almost the same. It is concluded that the transforming onc gene of FSV is distinct from that of Rous sarcoma virus and other avian tumor viruses with sarcomagenic properties. Hence, multiple mechanisms exist for sarcomagenic transformation of avian cells.There are a number of sarcomagenic viruses in the avian tumor virus group that fall into discrete RNA subgroups, defined here on the basis of helper-virus unrelated, specific RNA sequences.[See below and ref. 1. Both defective and nondefective viruses can be classified consistently by using RNA subgroups (1). In contrast, only nondefective viruses can be classified on the basis of envelope subgroups (2). ] The Rous subgroup includes the replication-defective Bryan Rous sarcoma virus (RSV), the nondefective Schmidt-Ruppin strain, and the Prague strain of RSV (2, 3). The most common neoplasm produced by the RSV RNA subgroup of viruses is a sarcoma. The Rous subgroup is defined by a related class of transforming genes of 1.5 kilobases (kb) termed src (1, 4-7), which are located near the 3' end of viral RNA (6) and encode a 60-kilodalton nonstructural protein product thought to have a transforming function (8, 9). The ES4 strain of avian erythroblastosis virus...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.