Geodetic positioning is the geophysical record of reference for slow slip events, but typical daily solutions limit studies of the evolution of slow slip to its long‐term dynamics. Accompanying seismic low‐frequency earthquakes located precisely in time and space provide an opportunity to image slow slip dynamics at subdaily time scales. Here we show that a high‐resolution time history of low‐frequency earthquake fault slip alone can reproduce the geodetic record of slow slip that we observe to be dominated by subdaily fault slip dynamics. However, a simple linear model cannot accommodate the complex dynamics present throughout the slow slip cycle, and an analysis of different phases of the slow slip cycle shows that the ratio of geodetic to seismic fault slip varies as a function of time. This suggests that the low‐frequency earthquake source region saturates as slow slip grows in moment and area. We propose that rheological heterogeneities at the plate boundary associated with low‐frequency earthquakes do not play a significant role in the slow slip rupture process, thus implying that their activity is incidental to the driving aseismic slip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.