While most of the pharmacological therapies for melanoma utilize the apoptotic machinery of the cells, the available therapeutic options are limited due to the ability of melanoma cells to resist programmed cell death. Human melanoma cell lines A-375 and M186 are sensitive to ceramide-and Fas-induced cell death, while Mel-2a and M221 are resistant. We have now found that Mel-2a and M221 cells have a significantly higher ceramide/sphingosine-1-phosphate (S1P) ratio than A-375 and M186 cells. As sphingosine kinase (SphK) type 1 plays a critical role in determining the dynamic balance between the proapoptotic sphingolipid metabolite ceramide and the prosurvival S1P, we examined its role in apoptosis of melanoma cells. Increasing SphK1 expression reduced the sensitivity of A-375 melanoma cells to Fas-and ceramide-mediated apoptosis. Conversely, downregulation of SphK1 with small interfering RNA decreased the resistance of Mel-2a cells to apoptosis. Importantly, overexpression of the prosurvival protein Bcl-2 in A-375 cells markedly stimulated SphK1 expression and activity, while downregulation of Bcl-2 reduced SphK1 expression. This link between Bcl-2 and SphK1 might be an additional clue to chemotherapy resistance of malignant melanoma.
SUMMARYWe compared the immunological functions of interferon-c (IFN-c)-induced, classically activated macrophages (caMW) and of interleukin-4 (IL-4)-and glucocorticoid-induced, alternatively activated macrophages (aaMW) in a human co-culture system in vitro. Proliferation of peripheral blood leucocytes (PBL) or CD4+ T cells mediated by optimal doses of phytohaemagglutinin (PHA) or concanavalin A (Con A) was only marginally influenced by caMW, but was strongly inhibited by aaMW. The degree of lymphocyte proliferation sustained in the presence of caMW was gradually reduced in a dose-dependent fashion by the addition of aaMW. Flow cytometric analysis revealed that expression of costimulatory molecules such as CD11a, CD40, CD54, CD58, CD80 and CD86 did not vary significantly between caMW and aaMW and was low for CD58, CD80 and CD86. As shown by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, IL-10 was expressed in caMW, aaMW and control macrophages; the level of expression of IL-10 was slightly enhanced in aaMW. Neither neutralizing anti-IL-10 antibodies, indomethacin nor NG-monomethyl--arginine (NMMLA) was able to reverse aaMW-mediated inhibition of lymphocyte proliferation. Of several agents interfering with various second messenger pathways, cAMP and the Ca2+-ionophor A23187 inhibited differentiation of cultured human monocytes into phenotypically mature aaMW expressing MS-1 high molecular weight protein (MS-1-HMWP) and RM 3/1 antigen, and prevented the suppressive action of aaMW on lymphocyte proliferation. In conclusion, these results show that aaMW actively inhibit mitogen-mediated proliferation of PBL and CD4+ T cells independently of the expression of costimulatory molecules and of IL-10, NO or prostaglandin synthesis, and that inhibition of phenotypic differentiation of aaMW is paralleled by a lack of functional maturation. Thus, fully matured aaMW may be functional in down-regulating CD4+ T-cell-mediated immune reactions by an as yet unknown mechanism.
Cutaneous melanoma is one of the highly malignant human tumours, due to its tendency to generate early metastases and its resistance to classical chemotherapy. We recently demonstrated that pamidronate, a nitrogen-containing bisphosphonate, has an antiproliferative and proapoptotic effect on different melanoma cell lines. In the present study, we compared the in vitro effects of three different bisphosphonates on human melanoma cell lines and we demonstrated that the two nitrogen-containing bisphosphonates pamidronate and zoledronate inhibited the proliferation of melanoma cells and induced apoptosis in a dose- and time-dependent manner. Moreover, cell cycle progression was altered, the two compounds causing accumulation of the cells in the S phase of the cycle. In contrast, the nonaminobisphosphonate clodronate had no effect on melanoma cells. These findings suggest a direct antitumoural effect of bisphosphonates on melanoma cells in vitro and further support the hypothesis of different intracellular mechanisms of action for nitrogen-containing and nonaminobisphosphonates. Our data indicate that nitrogen-containing bisphosphonates may be a useful novel therapeutic class for treatment and/or prevention of melanoma metastases.
We have cloned a novel human CC-chemokine, alternative macrophage activation-associated CC-chemokine (AMAC)-1. The isolated cDNA clone (803 bp) shows a single open reading frame of 267-bp coding for 89 amino acid residues; mature AMAC-1 protein is predicted to consist of 69 amino acids with a m.w. of 7855. Sequence alignment and 3D-modeling show the typical structural characteristics of CC-chemokines with special features in the receptor-activating domain. AMAC-1 is most closely related to MIP-1α with a cDNA and protein sequence homology of 55% and 59%, respectively. However, the expression pattern of AMAC-1 is directly opposite to that of MIP-1α. While MIP-1α is induced by classical macrophage mediators such as LPS and is inhibited by IL-4 and glucocorticoids, AMAC-1 is specifically induced in macrophages by alternative macrophage mediators such as IL-4, IL-13, and IL-10. Expression of AMAC-1 is inhibited by IFN-γ while glucocorticoids exert a slightly positive synergistic effect in combination with IL-4. Peripheral blood monocytes do not express AMAC-1; time course experiments show that monocyte-to-macrophage differentiation is a prerequisite for AMAC-1 expression. Expression of AMAC-1 by granulocyte--macrophage CSF/IL-4-induced, monocyte-derived dendritic cells is complex; in mature adherent dendritic cells, however, only minor AMAC-1 mRNA expression was found. In vivo, AMAC-1 is expressed by alveolar macrophages from healthy persons, smokers, and asthmatic patients. In conclusion, AMAC-1 is a novel CC-chemokine whose expression is induced in alternatively activated macrophages by Th2-associated cytokines; thus, AMAC-1 may be involved in the APC-dependent T cell development in inflammatory and immune reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.