Water is an essential resource for agriculture and the majority of land is irrigated through borewells or wells. The power requirement for an irrigation pump motor is fed by the on-grid power supply but the availability of electricity in rural areas is still questionable. With rising concerns about global warming and the rise in carbon footprints, it is necessary to choose clean and green energy, thereby attaining self-sustainable life. India receives yearly a mean solar irradiation of 6.5 kWh/m2day. Hence, a solar photovoltaic–water-pumping system (SPV–WPS) is a suitable alternative to grid energy; thereby, the farmers would generate electricity through the solar photovoltaic system and become self-sufficient in their energy needs. In this paper, two different agricultural fields in Tamil Nadu, India that deploy flood irrigation and drip irrigation are taken as a case study. The paper discusses the concerns on the use of grid power and their carbon footprint, design and simulation of 4- and 5.5-kW SPV–WPSs using PVsyst 7.1.1, and the advantages of using SPV–WPSs and life-cycle cost analysis on different use cases. The Government of India has introduced a special scheme to promote the installation of SPV–WPSs by offering attractive incentives through PM-Kisan Urja Suraksha evam Utthaan Mahabhiyan (KUSUM) yojana. The results of the case study show that with the use of SPV–WPSs, either with or without subsidy, the farmer could gain a minimum of 250% on the investment with a project lifetime of 25 years.
Fresh water irrigation in the agricultural land is of raising importance. Since there is a heavy demand for the fresh water, reduced and optimal usage of resources is encouraged which can be provided by the usage of automation technologies and its apparatus like irrigation, sensors and remote operation. Emerging trends in agriculture aims at ensuring more productivity and less damage to the land which led to soil nutrient management, where the fertilizers can be met based on local requirements with go green technology. Providing latest technologies in nutrient management along with sophisticated sensor control will mentor in getting more productivity and profitability. Non destructive and efficient sensors are used to track the utility. Also the developed irrigation method removes the need for workmanship for irrigation and maintaining farm or field. The purpose of this paper is to provide more facility in agriculture field by using wireless sensor network along with linear programming and monitoring system. Paper describes an application of a wireless sensor network for low-cost wireless controlled and monitored irrigation solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.