Ultrafast high-temperature sintering (UHS) and flash sintering are novel methods for rapid sintering of ceramics, often completed in just a few seconds. Here, we show that both also share two additional features: an abrupt rise in electrical conductivity, which is electronic, and electroluminescence. More fundamentally, both are related to phonon physics where MD calculations have shown that proliferation of phonons at the edge of the Brillouin zone can induce Frenkel pairs without the application of electrical fields. Here, we show that, indeed, heating without the application of electric field, can also induce flash: Rapid heating processes of thin films of an oxide-salt deposited on silk fibers, with a propane torch, are shown to induce electronic conductivity, electroluminescence, and rapid sintering of the oxide. The discussion in this article harkens back to two inventions, more than a century ago, which can now be related to flash and UHS: (i) the Nernst glow lamp circa 1900, made from zirconia, and (ii) the Welsbach mantle, constituted from ceria doped thorium oxide, in the late nineteenth century. Thus, the confluence between high heating rate and electric field induced flash phenomena links the past to the new. The emerging question is how injection of phonons that has been shown to create Frenkels can further induce high electronic conductivity and electroluminescence in oxides. Both electronic conductivity and luminescence are likely related to the generation of electron-hole pairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.