The infection of pea (Pisum sativum) by Colletotrichum truncatum was studied by light and electron microscopy. These investigations were facilitated by use of an Argenteum pea mutant, which has a readily detachable epidermis. Infection pegs emerging from appressoria penetrated epidermal cells directly. Large intracellular primary hyphae formed a dense stromatic mycelium confined within a single epidermal cell. Primary mycelia gave rise to thinner secondary hyphae which radiated into surrounding cells and caused extensive wall dissolution. Melanized sclerotia developed in the centre of chlorotic water‐soaked lesions. Acervuli were not observed. Epidermal cells survived initial penetration by primary hyphae, as shown by their ability to plasmolyse and accumulate Neutral red, but all infected cells were dead when the secondary hyphae had formed. Six cultivars of pea were susceptible, but seven other legumes were resistant. A single isoform of polygalacturonase with a pI of 8·3 and apparent Mr of 40000 was purified from culture filtrates and the TV‐terminal amino acid sequence determined. The relevance of the results to the taxonomy of C. truncatum and the relationships between infection process and host range are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.