The Gaia Sausage and the Sequoia represent the major accretion events that formed the stellar halo of the Milky Way. A detailed chemical study of these main building blocks provides a pristine view of the early steps of the Galaxy's assembly. We present the results of the analysis of the UVES high-resolution spectroscopic observations at the 8.2 m VLT of 9 Sausage/Sequoia members selected kinematically using Gaia DR2. We season this set of measurements with archival data from Nissen & Schuster (2011) and GALAH DR3 (2020). Here, we focus on the neutron-capture process by analysing Sr, Y, Ba and Eu behaviour. We detect clear enhancement in Eu abundance ([Eu/Fe]∼ 0.6 − 0.7) indicative of large prevalence of r-process in the stellar n-capture makeup. We are also able to trace the evolution of the heavy element production across a wide range of metallicity. Barium to europium ratio changes from a tight, flat sequence with [Ba/Eu]=-0.7 reflecting dominant core-collapse SNe contribution, to a clear upturn at higher iron abundances, betraying the onset of contamination from asymptotic giant branch (AGB) ejecta. Additionally, we discover two clear sequences in [Fe/H]−[Ba/Fe] plane likely caused by distinct levels of s-process pollution and mixing within the GS progenitor.
Context. The VISTA Variables in the Vía Láctea (VVV) is a near-IR time-domain survey of the Galactic bulge and southern plane. One of the main goals of this survey is to reveal the 3D structure of the Milky Way through their variable stars. In particular, enormous numbers of RR Lyrae stars have been discovered in the inner regions of the bulge (−8• ) by optical surveys such as OGLE and MACHO, but leaving an unexplored window of more than ∼47 sq deg (−10.0• and −10.3• b −8.0 • ) observed by the VVV Survey. Aims. Our goal is to characterize the RR Lyrae stars in the outer bulge in terms of their periods, amplitudes, Fourier coefficients, and distances in order to evaluate the 3D structure of the bulge in this area. The distance distribution of RR Lyrae stars will be compared to that of red clump stars, which is known to trace a X-shaped structure, in order to determine whether these two different stellar populations share the same Galactic distribution. Methods. A search for RR Lyrae stars was performed in more than ∼47 sq deg at low Galactic latitudes (−10.3• ). In the procedure the χ 2 value and analysis of variance (AoV) statistic methods were used to determine the variability and periodic features of the light curves, respectively. To prevent misclassifications, the analysis was performed only on the fundamental mode RR Lyrae stars (RRab) owing to similarities found in the near-IR light curve shapes of contact eclipsing binaries (W UMa) and first overtone RR Lyrae stars (RRc). On the other hand, the red clump stars of the same analyzed tiles were selected, and cuts in the color-magnitude diagram were applied and the maximum distance restricted to ∼20 kpc in order to construct a similar catalog in terms of distances and covered area compared to the RR Lyrae stars. Results. We report the detection of more than 1000 RR Lyrae ab-type stars in the VVV Survey located in the outskirts of the Galactic bulge. A few of them are possibly associated with the Sagittarius Dwarf Spheroidal Galaxy. We calculated colours, reddening, extinction, and distances of the detected RR Lyrae stars in order to determine the outer bulge 3D structure. Our main result is that, at the low galactic latitudes mapped here, the RR Lyrae stars trace a centrally concentrated spheroidal distribution. This is a noticeably different spatial distribution to the one traced by red clump stars known to follow a bar and X-shaped structure. We estimate the completeness of our sample at 80% for K s ≤ 15 mag.
Aims. ω Centauri (NGC 5139) contains many variable stars of different types and, in particular, more than one hundred RR Lyrae stars. This enabled gathering a homogeneous sample (in terms of instrument, image quality, and time coverage) of high-quality near-infrared (NIR) RR Lyrae light curves by performing an extensive time-series campaign aimed at this object. We have conducted a variability survey of ω Cen in the NIR, using ESO's 4.1 m Visible and Infrared Survey Telescope for Astronomy (VISTA). This is the first paper of a series describing our results. Methods. ω Cen was observed using VIRCAM mounted on VISTA. A total of 42 epochs in J and 100 epochs in K S were obtained, distributed over a total timespan of 352 days. Point-spread function photometry was performed using DAOPHOT in the inner and DoPhot in the outer regions of the cluster. Periods of the known variable stars were improved when necessary using an ANOVA analysis. Results. We collected an unprecedented homogeneous and complete NIR catalog of RR Lyrae stars in the field of ω Cen, allowing us to study for the first time all the RR Lyrae stars associated with the cluster, except for four stars that are located far away from the cluster center. We derived membership status, subclassifications between RRab and RRc subtypes, periods, amplitudes, and mean magnitudes for all the stars in our sample. Additionally, four new RR Lyrae stars were discovered, two of which are very likely cluster members. We also discuss here the distribution of ω Cen stars in the Bailey (period-amplitude) diagram. We provide reference lines in this plane for both Oosterhoff Type I (OoI) and Oosterhoff Type II (OoII) components in J and K S . Conclusions. We clarify the status of many (candidate) RR Lyrae stars that have been reported as unclear in previous studies. This includes stars with anomalous positions in the color−magnitude diagram, uncertain periods or/and variability types, and possible field interlopers. We conclude that ω Cen hosts a total of 88 RRab and 101 RRc stars, which makes for a grand total of 189 probable members. We confirm that most RRab stars in the cluster appear to belong to an OoII component, as previously found using visual data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.