The localization and dynamics of fragrance compounds in surfactant micelles are studied systematically in dependence on the hydrophobicity and chemical structure of the molecules. A broad range of fragrance molecules varying in octanol/water partition coefficients P ow is employed as probe molecules in an aqueous micellar solution, containing anionic and nonionic surfactants. Diffusion coefficients of surfactants and fragrances obtained by Pulsed Field Gradient (PFG)-NMR yield the micelle/water distribution equilibrium. Three distinct regions along the log(P ow ) axis are identified: hydrophilic fragrances (log(P ow ) \ 2) distribute almost equally between micellar and aqueous phases whereas hydrophobic fragrances (log(P ow ) [ 3.5) are fully solubilized in the micelles. A steep increase of the incorporated fraction occurs in the intermediate log(P ow ) region. Here, distinct micelle swelling is found, while the incorporation of very hydrophobic fragrances does not lead to swelling. The chemical structure of the probe molecules, in addition to hydrophobicity, influences fragrance partitioning and micelle swelling. Structural criteria causing a decrease of the aggregate curvature (flattening) are identified. 2 H-NMR spin relaxation experiments of selectively deuterated fragrances are performed monitoring local mobility of fragrance and leading to conclusions about their incorporation into either micellar interface or micelle core. The tendencies of different fragrance molecules (i) to cause interfacial incorporation, (ii) to lead to a flattening of the micellar curvature and (iii) to incorporate into micelles are shown to be correlated.
Thermal decomposition of t-butyl peracetate in a solution of ethyl t- butylperoxymethylpropenoate in methyl propanoate led to the products of substitution of the three different hydrogens in the molecule of the methyl ester by the 2,3-epoxy-2-ethoxycarbonylpropyl group. An SHi reaction on the peroxide function, following the addition to the double bond, is responsible for the formation of these epoxides . Such a result is due to the low regioselectivity of the hydrogen abstraction from methyl propanoate by t- butoxyl radicals, and no improvement could be obtained by changing the relative ratios of the reactants, in converse to previous results described for similar reactions. Thus, selective creation of alkyl radicals was developed through the generation of tributylstannyl radicals as mediator radicals, by reaction of t- butoxyl radicals on tributyltin hydride or hexabutylditin ; the mediator radicals abstract an iodine atom from the alkyl iodide. Application of this methodology to the three iodo derivatives of methyl propanoate permitted us to obtain selectively each of the three epoxides.
Free-radical-chain reduction of organic halides is accomplished with heptamethyltrisilanethiol, a reducing agent combining the good hydrogen donating ability of a thiol and the excellent halogen abstracting properties of a silyl radical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.