The asymptotic flow structure is considered for a viscous–inviscid conical interaction, in particular that between a swept shock wave and a boundary layer. A flow model is devised based on the three-layer interaction concept. Assuming conicity of the inviscid flow regions, a viscous layer structure is established that is compatible with the inviscid outer flow, and which produces a geometrically conical surface flow pattern. This result is obtained from a dimensional analysis, which reveals similarity of the viscous layer in cross-flow planes at different radial distances from the conical origin. The results of this analysis provide a tool for the quantitative interpretation of surface flow visualizations in terms of the related topological structure of the flow in the cross-flow plane. This method is illustrated by application to the surface flow visualization of a Mach 3 shock-wave/boundary-layer interaction.
The supersonic flow field past a circular cone of semi-apex angle 7·5° at incidences up to 26° has been investigated experimentally at a free-stream Mach number of 2·94. The experiments were made using a five-hole conical-head directional probe. Since the flow past the cone was found to be conical, the flow phenomena may be described in a plane perpendicular to the cone axis. This paper gives the direction of the conical streamlines, the conical sonic line and the conical Mach number in such a plane, all of which may be deduced from the measurements. At incidences exceeding twice the cone semi-apex angle a separated flow regime was observed which consisted of two main vortices on either side of the leeward plane of symmetry, and probably also two secondary vortices close to the cone surface. From incidences of 17° onwards, an embedded region of conical supersonic flow terminated by a shock wave was revealed. At 22°, approximately, a second embedded shock wave was measured close to the cone surface and extended slightly across the leeward plane of symmetry. This shock wave may have been generated by the vortex system, which induced supersonic cross-flow components towards the cone.
This paper presents a holographic interferometer technique for measuring transparent (2-D or quasi 2-D) density fields. To be able to study the realization of such a field at a certain moment of time, the field is "frozen" on a holographic plate. During the reconstruction of the density field from the hologram the length of the path traversed by the reconstruction beam is diminished in equal steps by applying a computer controlled voltage to a piezo-electric crystal that translates a mirror. Four phase-stepped interferograms resulting from this pathlength variation are digitized and serve as input to an algorithm for computing the phase surface. The method is illustrated by measuring the basically 2-D density field existing around a heated horizontal cylinder in free convection.
The toepler schlieren system of wind tunnels is usually designed in such a way that an image of the flow in the test section can be formed in a camera for taking flow pictures. For visual observation, a mirror is inserted in the light beam and the image is projected on a screen. When a photograph or film record of the flow is desired, the mirror is removed by some quick-acting mechanism to allow the light beam to enter the camera. Especially in the case of non-steady flows, the time lag involved in removing the mirror can prove to be a drawback. An interesting pattern observed upon the screen may have vanished by the time the light beam is switched over to the camera. At the same time the image disappears from the screen, leaving the operator in doubt whether or not the pattern lasted long enough to be recorded by the camera. In this note a very simple arrangement of the schlieren system is described, which gives simultaneously an image on the viewing screen and in the camera. So far as the author knows, it is not applied elsewhere. The method consists of the use of a mirror knife edge instead of the usual knife edge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.