Black pod rot, caused by Phytophthora megakarya, is the main cause of cocoa losses in Cameroon. A few studies have focused on describing black pod epidemics in cocoa yet numerous questions remain. Here, an epidemiological model describing the temporal evolution of cocoa black pod, taking into account the development stages of pods, is developed and studied. In particular, the relative importance of primary and secondary infection in disease dynamics is investigated. Our theoretical study shows the existence of a disease free equilibrium and at least one endemic equilibrium. We highlight two threshold parameters, related to direct and indirect infections that summarize all possible dynamics of the system. Then, based on the literature, we define a periodic pod recruitment function and provide several numerical simulations to study the impact of phytosanitary pod removal on disease dynamics. We show that intense and regular sanitary harvest could lead to complete disease eradication.Our results also highlight the importance of the environmental spores reservoir in disease dynamics, such that future field experiments and observations should focus on it. KEYWORDS analysis, black pod rot, cocoa, disease, epidemiological model, simulations 8816
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.