The interaction of Ca2+ and Mg2+ with phosphatidylserine (PS) vesicles in 0.1 M NaCl aqueous solution was studied by equilibrium dialysis binding, X-ray diffraction, batch microcalorimetry, kinetics of cation-induced vesicle aggregation, release of vesicle contents, and fusion. Addition of either cation causes aggregation of PS vesicles and produces complexes with similar stoichiometry (1:2 cation/PS) at saturating concentrations, although the details of the interactions and the resulting complexes are quite different. Addition of Ca2+ to PS vesicles at T greater than or equal to 25 degrees C induces the formation of an "anhydrous" complex of closely apposed membranes with highly ordered crystalline acyl chains and a very high transition temperature (Tc greater than 100 degrees C). The formation of this complex is accompanied by a release of heat (5.5 kcal/mol), rapid release of vesicle contents, and fusion of the vesicles into larger membranous structures. By contrast, addition of Mg2+ produces a complex with PS which is much more hydrated, has no crystallization of the acyl chains at T greater than or equal to 20 degrees C, and has comparatively little fusion. Studies with both Ca2+ and Mg2+ added simultaneously indicate that there is a synergistic effect between the two cations, which results in an enhancement of the ability of Ca2+ to form its specific complex with PS at lower concentrations. The presence of the erythrocyte protein "spectrin" inhibits this synergism and interferes with the formation of the specific PS/Ca complex. It also inhibits the fusion of PS vesicles. It is proposed that the unique PS/Ca complex, which involves close apposition of vesicle membranes, is an intermembrane "trans" complex. We further propose that such a complex is a key step for the resultant phase transition and fusion of PS vesicles. By contrast, the PS/Mg complex is proposed to be a "cis" complex with respect to each membrane. The results are discussed in terms of the mechanism of membrane fusion.
Primary cultures of bovine brain microvessel endothelial cells (BMECs) were used to examine the cycling kinetics of ferrotransferrin (Tf) and to provide evidence for a transcytotic pathway in vitro. Binding of 125I-Tf to BMECs grown on matrix-coated plastic was measured in the presence of saponin to calculate the total number of transferrin receptors (TfRs). Nonlinear regression analysis of the binding isotherm showed that there were 100,000 high-affinity receptors per cell and that expression was maximum at cell confluence. Binding of Tf at 4 degrees C indicated that there was a large intracellular receptor pool comprising 85-90% of the total cellular receptors. Accumulation of Tf at 37 degrees C, inhibited at low temperature and in the presence of metabolic poisons, occurred with an initial rate coefficient of 0.030 min-1 and this decreased by 83% after 60 min. Concomitant accumulation of 59Fe from Tf-59Fe was linear. In the absence of externally added ligand, 80% of the accumulated 125I-Tf was released into the medium with a rate coefficient of 0.017 min-1 and this was inhibited at low temperature. In the presence of the weak base primaquine, the accumulation of Tf and 59Fe and the efflux of Tf were decreased. Moreover, phorbol myristate acetate (PMA) caused a 30% increase in surface TfRs and an 82% increase in Tf accumulation, although the size of the recycling pool remained unchanged. Despite the low numbers of TfR expressed by post-confluent cells, filter-grown BMEC monolayers were used to measure transcytosis of Tf. A small portion of the Tf that was accumulated from the apical side entered a transcytotic pathway. Most of the Tf and all of an accumulated fluid-phase tracer were recycled towards the apical side. These results showed that cultured BMECs cycle Tf-TfR complexes slowly and vectorially and suggested that the large intracellular receptor pool may facilitate steady state accumulation and regulate transcellular transport of iron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.