Fines migration in coalbed methane (CBM) fields comprises a serious environmental and gas-production challenge. The literature widely reports two kinds of fines: potential coal fines, which are a part of the coal body and can be detached by breakage under a significant drag force exerted from the inflowing water, and detrital coal fines, which are attached to the coal body by electrostatic forces. The theory for detrital coal fines migration is well developed. A theory for potential coal fines, where the drag deforms the coal asperities and detaches fines by rock failure, is not available. The objectives of this study are (1) to derive the governing equations for fines generation by breakage using failure criteria, and (2) to predict well productivity during dewatering and gas production using laboratory-based modelling. The micro-model developed is based on beam theory and comprises static rock deformation by the flow-through water and calculating failure criteria by tensile and shear stresses. The failure condition determines the number of fines that detach after the application of each flow rate, allowing determining the maximum retention function of potential coal fines. The breakage micro-model is incorporated into filtration equations that account for fines mobilisation, migration, straining and consequent permeability decline. Eight series of lab flooding data with coal cores have been treated. The close match between the lab and model validates the model developed. The model allows predicting productivity decline due to permeability reduction by fines breakage and straining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.