Mixed cultures represent better alternatives to ferment organic waste and dark fermentation products in anerobic conditions because the microbial associations contribute to electron transfer mechanisms and combine metabolic possibilities. The understanding of the microbial interactions in natural and synthetic consortia and the strategies to improve the performance of the processes by bioaugmentation provide insight into the physiology and ecology of the mixed cultures used for biotechnological purposes. Here, synthetic microbial communities were built from three hydrogen (bioH2) and poly-hydroxy-alkanoates (PHA) producers, Clostridium pasteurianum, Rhodopseudomonas palustris and Syntrophomonas wolfei, and a photoheterotrophic mixed consortium C4, and their performance was evaluated during photofermentation. Higher hydrogen volumetric production rates (H2VPR) were determined with the consortia (28–40 mL/Lh) as compared with individual strains (20–27 mL/Lh). The designed consortia reached the highest bioH2 and PHA productions of 44.3 mmol and 50.46% and produced both metabolites simultaneously using dark fermentation effluents composed of a mixture of lactic, butyric, acetic, and propionic acids. When the mixed culture C4 was bioaugmented with S. wolfei, the bioH2 and PHA production reached 32 mmol and 50%, respectively. Overall, the consumption of organic acids was above 50%, which accounted up to 55% of total chemical oxygen demand (COD) removed. Increased bioH2 was observed in the condition when S. wolfei was added as the bioaugmentation agent, reaching up to 562 mL of H2 produced per gram of COD. The enhanced production of bioH2 and PHA can be explained by the metabolic interaction between the three selected strains, which likely include thermodynamic equilibrium, the assimilation of organic acids via beta-oxidation, and the production of bioH2 using a proton driving force derived from reduced menaquinone or via electron bifurcation.
In this study, the biohydrogen (bioH) production of a microbial consortium was optimized by adjusting the type and configuration of two impellers, the mixing regimen and the mass transfer process (Ka coefficients). A continuous stirred-tank reactor (CSTR) system, with a nonstandard geometry, was characterized. Two different mixing configurations with either predominant axial (PB4 impeller) or radial pumping (Rushton impeller) were assessed and four different impeller configurations to produce bioH. The best configuration for an adequate mixing time was determined by an ANOVA analysis. A response surface methodology was also used to fully elucidate the optimal configuration. When the PB4 impellers were placed in best configuration, c/Dt = 0.5, s/Di = 1, the maximum bioH productivity obtained was 440 mL L hr, with a bioH molar yield of 1.8. The second best configuration obtained with the PB4 impellers presented a bioH productivity of 407.94 mL L hr. The configurations based on Rushton impellers showed a lower bioH productivity and bioH molar yield of 177.065 mL L hr and 0.71, respectively. The experiments with axial impellers (PB4) showed the lowest Ka coefficient and the highest bioH production, suggesting that mixing is more important than Ka for the enhanced production of bioH
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.