Methane is the simplest organic molecule, and like many supposedly simple molecular materials it has a rich phase diagram. While crystal structures could be determined for two of the solid phases, that of the low temperature phase III remained unsolved. Using high-resolution neutron powder diffraction and a direct-space Monte Carlo simulated annealing approach, this fundamental structure has now finally been solved. It is orthorhombic with space group Cmca, and 16 molecules in the unit cell. The structure is closely related to that of phase II, yet is no subgroup of it.
The hydrogen dynamics in the metalhexahydrateperchlorates with Mg, Mn, Fe, Ni, and Zn as metal ions has been investigated with quasielastic neutron scattering. The water molecules perform 180°-flip motions on a picosecond time scale through a series of solid–solid phase transitions. In the highest temperature phase I and the subsequent phase II, rotational barriers of typically Ea=50 meV are found. These values are surprisingly small in view of the low symmetry of H2O molecules. The I → II phase transition has only very small effects on the hydrogen dynamics. At the transition into phase III an increase of the rotational barriers to typically Ea=250 meV is found. This is interpreted as the formation of weak hydrogen bonds. In phase I 180°-flip motions provide a complete description of the observed data. In phases II and III an extension of the dynamical model toward a stronger localization of hydrogen is required. A preference is given to a mechanism leading to a temporary blockade of the flip motions. In phase III of the Fe compound, the existence of crystallographically different sites for water molecules is inferred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.