7 pages, 5 figures, submitted to ApJQUaD is a bolometric CMB polarimeter sited at the South Pole, operating at frequencies of 100 and 150 GHz. In this paper we report preliminary results from the first season of operation (austral winter 2005). All six CMB power spectra are presented derived as cross spectra between the 100 and 150 GHz maps using 67 days of observation in a low foreground region of approximately 60 deg2. These data are a small fraction of the data acquired to date. The measured spectra are consistent with the ΛCDM cosmological model. We perform jackknife tests that indicate that the observed signal has negligible contamination from instrumental systematics. In addition, by using a frequency jackknife we find no evidence for foreground contamination
Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien–Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk.
Millimetre wave corrugated waveguide-horn structures are used as both single-moded and multi-moded bolometer feeds in a number of cosmic microwave background (CMB) experiments (e.g. PLANCK, Archeops, QUaD). Such horns tend to be employed over a relatively wide bandwidth and for single-moded horns the waveguide acts as the high pass filter. In this paper we report on our investigation on how the waveguide details determine the exact location of the low frequency band edge of such corrugated horns. A sharp step-like band edge, below which there is negligible propagation, is ideally required. Furthermore any leakage below the expected cut-off, possible in corrugated guides, could lead to non-idealised cross-polar effects. Typically deeper corrugations are required in the waveguide filter than at the horn aperture for wide bandwidth operation, thus necessitating a transition section over which the corrugation depth smoothly varies. An electromagnetic mode matching technique and a surface impedance hybrid mode model are used to compute the horn transmission characteristics. We have also undertaken laboratory measurements of the band edge of prototype corrugated horns in order to test the models. Ó 2004 Elsevier B.V. All rights reserved.JEL classification: 95.55. Àn; 95.55.Cs; 95.55.Fw; 07.87.+v
We describe the optical design and performance of 'QUEST and DASI' or 'QUaD', a ground-based high-resolution experiment designed to measure the polarisation properties of the cosmic microwave background radiation. QUaD uses bolometric detectors at 100 and 150 GHz on a 2.6 m Cassegrain telescope. The QUaD optics are designed to minimise systematic effects as well as to maximise sensitivity, and we report here on the comprehensive quasi-optical analysis used to achieve this design. We also present initial optical performance measurements achieved in operation, and discuss changes made to the optics to overcome some errors in the mechanical construction of the primary mirror. The QUaD experiment is now fully operational and taking world-leading data at the South Pole
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.