Clostridium perfringens carrying the enterotoxin gene is an important cause of both foodborne and non-foodborne diarrheal disease. Rapid identification of isolates carrying the enterotoxin gene is invaluable for outbreak investigation whilst information on the genomic location of the enterotoxin (cpe) gene can improve our understanding of disease transmission. This paper describes the validation of a real-time polymerase chain reaction (PCR) assay for the identification of C. perfringens and assessment of the potential to cause diarrhea, together with an investigation into the genomic location of the cpe genes in isolates from confirmed incidents of C. perfringens diarrhea. The real-time assay was shown to be specific for the identification of 253 C. perfringens cultures and gave results concordant with those from motility nitrate and lactose gelatine media, the Nagler reaction, and a conventional block-based PCR assay. The cpe gene was detected in 223 of 253 C. perfringens cultures isolated in association with human gastrointestinal disease. A subset of cpe-positive C. perfringens isolates associated with separate incidents of diarrheal disease were investigated further for plasmid or chromosomal location of the cpe gene using a multiplex PCR assay. The cpe gene was plasmid encoded in two isolates from cases of sporadic diarrhea and six isolates from cases of food poisoning. The cpe gene from the remaining 11 isolates from different food poisoning outbreaks was found to be chromosomally encoded. One of the C. perfringens strains with a plasmid encoded cpe gene formed spores of high heat resistance and five formed spores that were sensitive to heating. Eight of the isolates with a chromosomal cpe gene formed heat-resistant spores, and two formed spores with an intermediate heat resistance.
Significance and Impact of the Study: The identification of species of Listeria from foods is important to monitor pathogenic strains and facilitates the implementation of control measures. This study shows the development and evaluation of a 5 0 exonuclease real-time PCR assay for the rapid identification of L. seeligeri, L. welshimeri, L. monocytogenes and L. ivanovii, L. grayi, L. innocua. The developed assay proved to be specific, rapid and reproducible and therefore could be implemented in busy specialist reference laboratories. AbstractThe Listeria genus comprises 10 recognized species. Listeria monocytogenes causes listeriosis in humans and other animals primarily via contaminated food or animal feed. Listeria ivanovii causes listeriosis in animals and on rare occasions in humans. The identification of nonpathogenic species of Listeria in foods indicates that conditions exist that support the growth of pathogenic strains and is used to facilitate the implementation of control and prevention measures. This study shows the development and evaluation of a 5 0 exonuclease real-time PCR assay for the rapid identification of Listeria seeligeri, Listeria welshimeri, L. monocytogenes, L. ivanovii, Listeria grayi and Listeria innocua. The assay consists of two triplexes that were evaluated using 53 cultures of Gram-positive bacteria, including 49 Listeria spp. from human, animal, food or food-processing environments. The assay was rapid, specific and reproducible and could identify each of the six species from a mixture of strains. The developed assay proved to be a powerful means of rapidly identifying Listeria species and could be usefully implemented in busy specialist reference laboratories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.