Abstract. Measurements of spatial and temporal changes in the grain-size distribution of the bed surface and substrate are crucial to improving the modelling of sediment transport and associated grain-size selective processes. We present three complementary techniques to determine such variations in the grain-size distribution of the bed surface in sand-gravel laboratory experiments, as well as the resulting size stratification: (1) particle colouring, (2) removal of sediment layers, and (3) image analysis. The resulting stratification measurement method was evaluated in two sets of experiments. In both sets three grain-size fractions within the range of coarse sand to fine gravel were painted in different colours. Sediment layers are removed using a wet vacuum cleaner. Subsequently areal images are taken of the surface of each layer. The areal fraction content, that is, the relative presence of each size fraction over the bed surface, is determined using a colour segmentation algorithm which provides the areal fraction content of a specific colour (i.e. grain size) covering the bed surface. Particle colouring is not only beneficial to this type of image analysis but also to the observation and understanding of grain-size selective processes. The size stratification based on areal fractions is measured with sufficient accuracy. Other advantages of the proposed size stratification measurement method are (a) rapid collection and processing of a large amount of data, (b) a very high spatial density of information on the grain-size distribution, (c) the lack of disturbances to the bed surface, (d) only minor disturbances to the substrate due to the removal of sediment layers, and (e) the possibility to return a sediment layer to its original elevation and continue the flume experiment. The areal fractions are converted into volumetric fractions using an existing conversion model.
Abstract. Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1 mm sand fraction and two gravel fractions (6 and 10 mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport conditions led to an abrupt spatial transition in the bed slope and in the mean grain size of the bed surface, as such showing similar results to a previous laboratory experiment conducted with a bimodal mixture. The focus of the current analysis is to study the mechanisms of armor breakup. After an increase in flow rate the armor broke up and a new coarser armor quickly formed. The breakup initially induced a bed surface fining due to the exposure of the finer substrate, which was accompanied by a sudden increase in the sediment transport rate, followed by the formation of an armor that was coarser than the initial one. The reformation of the armor was enabled by the supply of coarse material from the upstream degrading reach and the presence of gravel in the original substrate sediment. Here armor breakup and reformation enabled slope adjustment such that the new steady state was closer to normal flow conditions.
We present a new image analysis technique for measuring the grain size distribution (texture) of the bed surface during flow in a laboratory experiment. A camera and a floating device are connected to a carriage used to take images of the bed surface over the entire flume length. The image analysis technique, which is based on color segmentation, provides detailed data on spatial and temporal changes of the areal fraction content of each grain size at the bed surface. The technique was applied in a laboratory experiment conducted to examine a degradational reach composed of a well sorted two‐fraction mixture of sand and gravel. The initial bed consisted of an upstream reach that was characterized by an imposed stepwise fining pattern (the bimodal reach) and a downstream sand reach. A lack of sediment supply and partial transport conditions led to the formation of a static armor in the bimodal reach, which resulted in a more abrupt spatial transition in the bed surface mean grain size. The associated spatial transition in slope led to a backwater effect over the bimodal reach, a streamwise reduction in sand mobility, and so a static armor that was governed by a downstream fining pattern. Although a morphodynamic equilibrium state under steady flow is generally characterized by normal flow, here the partial transport regime prevented the bed from adjusting toward normal flow conditions and the morphodynamic steady state was governed by a backwater. We applied a numerical morphodynamic sand‐gravel model to reproduce the laboratory experiment. The numerical model captured the hydrodynamic and morphodynamic adjustment and the static armor well, yet the armoring occurred too slowly. Although the final configuration of the experiment shows features of a gravel‐sand transition (i.e., a sudden transition in slope and mean grain size), we are hesitant to claim similarities between our results and the physical mechanisms governing a gravel‐sand transition in the field.
Laboratory experiments were conducted on a sand-gravel Gilbert delta to gain insight on its dynamics under varying base level. Base level rise results in intensified aggradation over the topset, as well as a decrease in topset slope and topset surface coarsening, the signals of which migrate in an upstream direction. Preferential deposition of coarse sediment in the topset results in a finer load at the topset-foreset break, which creates a fine signature in the foreset deposit. Base level fall has the opposite effects. Entrainment of the topset mobile armor causes a coarsening of the load at the topset-foreset break and so a coarse signature in the foreset deposit. The entrainment of the topset substrate and fine top part of the foreset may follow, which causes a fining of the load and a fine signature in the foreset deposit. The fact that the upstream sediment supply requires a certain slope and bed surface texture to be transported downstream under quasi-equilibrium conditions counteracts the effects of base level change. This information travels in the downstream direction. In nature base level change is likely so slow that the upstream sediment load maintains the topset slope and bed surface texture and so keeps the topset in a quasi-equilibrium state. Base level change is therefore not expected to leave a clear signal in a mixed-sediment Gilbert delta other than a change in elevation of the topset-foreset interface.
Abstract. Measurements of spatial and temporal changes in the grain size distribution are crucial to improving the modelling of sediment transport and associated grain size-selective processes. We present three complementary techniques to determine such variations in the grain size distribution in sand-gravel laboratory experiments, as well as the resulting stratigraphy: (1) particle colouring, (2) removal of sediment layers, and (3) image analysis. The resulting stratigraphy measurement method has been evaluated in two sets of experiments. In both sets three grain size fractions within the range of coarse sand to fine gravel were painted in different colours. Sediment layers are removed using a wet vacuum cleaner. Subsequently areal images are taken of the surface of each layer. The areal fraction content, i.e. the relative presence of each size fraction over the bed surface, is determined using a colour segmentation algorithm which provides the areal fraction content of a specific colour (i.e., grain size) covering the bed surface. Particle colouring is not only beneficial to this type of image analysis but also observing and understanding grain size-selective processes. The stratigraphy based on areal fractions is measured with sufficient accuracy. Other advantages of the proposed stratigraphy measurement technique are: (a) rapid collection and processing of a large amount of data, (b) very high spatial density of information on the grain size distribution (so far unequalled in other methods), (c) the lack of disturbances to the bed surface, (d) only minor disturbances to the substrate due to the removal of sediment layers, and (e) the possibility to return a sediment layer at its original elevation and continue the flume experiment. The areal fractions can be converted into volumetric fractions using a conversion model. The proposed empirical conversion model is based on a comparison between the photogrammetry results and dry sieve analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.