Using the ADM formalism in the minisuperspace, we obtain the commutative and noncommutative exact classical solutions and exact wave function to the Wheeler-DeWitt equation with an arbitrary factor ordering, for the anisotropic Bianchi type I cosmological model, coupled to a scalar field, cosmological term and barotropic perfect fluid. We introduce noncommutative scale factors, considering that all minisuperspace variables q i do not commute, so the symplectic structure was modified. In the classical regime, it is shown that the anisotropic parameter β ±nc and the field φ, for some value in the λ eff cosmological term and noncommutative θ parameter, present a dynamical isotropization up to a critical cosmic time t c ; after this time, the effects of isotropization in the noncommutative minisuperspace seems to disappear. In the quantum regimen, the probability density presents a new structure that corresponds to the value of the noncommutativity parameter.
In this paper we present the noncommutative Bianchi Class A cosmological models coupled to barotropic perfect fluid. The commutative and noncommutative quantum solution to the Wheeler-DeWitt equation for any factor ordering, to the anisotropic Bianchi type II cosmological model are found, using a stiff fluid (γ = 1). In our toy model, we introduce noncommutative scale factors, is say, we consider that all minisuperspace variables q i does not commute, so the simplectic structure was modified.
The gravitational deflection of light in the strong field limit is an important test for alternative theories of gravity. However, solutions for the metric that allow for analytic computations are not always available. We implement a hybrid analytic-numerical approximation to determine the deflection angle in static, spherically symmetric spacetimes. We apply this to a set of numerical black hole solutions within the class of modified gravity theories known as degenerate higher order scalar–tensor theories (DHOST). Comparing our results to a more time consuming full numerical integration, we find that we can accurately describe the deflection angle for light rays passing at arbitrary distances from the photon sphere with a combination of two analytic-numerical approximations. Furthermore, we find a range of parameters where our DHOST black holes predict strong lensing effects whose size is comparable with the uncertainty in the properties of the supermassive black hole in M87 reported by the event horizon telescope, showing that strong lensing is a viable alternative to put constraints on these models of modified gravity.
In this paper we present an efficient way to both compute and extract salient information from trace transform signatures to perform object identification tasks. We also present a feature selection analysis of the classical trace-transform functionals, which reveals that most of them retrieve redundant information causing misleading similarity measurements. In order to overcome this problem, we propose a set of functionals based on Laguerre polynomials that return orthonormal signatures between these functionals. In this way, each signature provides salient and non-correlated information that contributes to the description of an image object. The proposed functionals were tested considering a vehicle identification problem, outperforming the classical trace transform functionals in terms of computational complexity and identification rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.