We analyze the scalability of diffraction-limited fiber lasers considering thermal, non-linear, damage and pump coupling limits as well as fiber mode field diameter (MFD) restrictions. We derive new general relationships based upon practical considerations. Our analysis shows that if the fiber's MFD could be increased arbitrarily, 36 kW of power could be obtained with diffraction-limited quality from a fiber laser or amplifier. This power limit is determined by thermal and non-linear limits that combine to prevent further power scaling, irrespective of increases in mode size. However, limits to the scaling of the MFD may restrict fiber lasers to lower output powers.
Over the past ten years, laser intensities have increased by more than four orders of magnitude to reach enormous intensities of 1020 W/cm2. The field strength at these intensities is on the order of a teravolt per centimeter, or a hundred times the Coulombic field binding the ground state electron in the hydrogen atom. The electrons driven by such a field are relativistic, with an oscillatory energy of 10 MeV. At these intensities, the light pressure, P = I/c, is extreme, on the order of giga- to terabars. The laser interacting with matter—solid, gas, plasma—generates high-order harmonics of the incident beam up to the 3 nm wavelength range, energetic ions or electrons with mega-electron-volt energies (figure 1), gigagauss magnetic fields and violent accelerations of 1021 g (g is Earth's gravity). Finally, the interaction of an ultraintense beam with superrelativistic particles can produce fields approaching the critical field in which an electron gains in one Compton wavelength an energy equal to twice its rest mass. Under these conditions, one observes nonlinear quantum electrody-namical effects. In many ways, this physical environment of extreme electric fields, magnetic fields, pressure, temperature and acceleration can be found only in stellar interiors or close to the horizon of a black hole. It is fascinating to think that an astrophysical environment governed by hydrodynamics, radiation transport and gravitational interaction can be re-created in university laboratories for extremely short times, switching the role of the scientist from voyeur to actor.
We study the performance of a class of interrogation systems that exploit nuclear resonance fluorescence (NRF) to detect specific isotopes. In these systems the presence of a particular nuclide is inferred by observing the preferential attenuation of photons that strongly excite an electromagnetic transition in that nuclide. Estimates for the false positive/negative error rates, radiological dose, and detection sensitivity associated with discovering clandestine material embedded in cargo are presented. The relation between performance of the detection system and properties of the beam of interrogating photons is also considered. Bright gamma-ray sources with fine energy and angular resolution, such as those based on Thomson upscattering of laser light, are found to be associated with uniquely low radiological dose, scan times, and error rates. For this reason a consideration of NRF-based interrogation systems may provide impetus for efforts in light source development for applications related to national security and industry.
A high peak brilliance, laser-based Compton-scattering-ray source, capable of producing quasimonoenergetic photons with energies ranging from 0.1 to 0.9 MeV has been recently developed and used to perform nuclear resonance fluorescence (NRF) experiments. Techniques for characterization of-ray beam parameters are presented. The key source parameters are the size (0:01 mm 2), horizontal and vertical divergence (6 Â 10 mrad 2), duration (16 ps), and spectrum and intensity (10 5 photons=shot). These parameters are summarized by the peak brilliance, 1:5 Â 10 15 photons=mm 2 =mrad 2 =s=0:1% bandwidth, measured at 478 keV. Additional measurements of the flux as a function of the timing difference between the drive laser pulse and the relativistic photoelectron bunch,-ray beam profile, and background evaluations are presented. These results are systematically compared to theoretical models and computer simulations. NRF measurements performed on 7 Li in LiH demonstrate the potential of Compton-scattering photon sources to accurately detect isotopes in situ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.