The phase equilibria in the Cu-rich portion of the Cu-Sn binary and Cu-Sn-Mn ternary systems have been determined using the diffusion-couple method, differential scanning calorimetry (DSC), high-temperature electron diffraction (HTED), and high-temperature X-ray diffraction (HTXRD) techniques. The present experimental results on the binary Cu-Sn system show the presence of the two-stage, second-order reaction in the bcc-phase region, rather than a two-phase equilibrium between the disordered bcc (A2) and the ordered bcc (D0 3 ) phases, as reported before. Phase equilibria in the Cu-Sn-Mn ternary system in the composition range of 0 to 30 at. pct Sn and 0 to 30 at. pct Mn at 550 °C, 600 °C, 650 °C, and 700 °C have been determined, and a ternary compound (Cu 4 MnSn) with a very small solubility has been detected. A thermodynamic analysis of the Cu-Sn-Mn ternary system including the Cu-Sn and Mn-Sn binary systems has also been carried out by the CALPHAD (Calculation of Phase Diagrams) method, in which the Gibbs energy of the bcc phase is described by the two-sublattice model in order to take into account the second-order A2/B2 ordering reaction. A consistent set of optimized thermodynamic parameters for the Cu-Sn-Mn system for describing the Gibbs energy of each phase results in a better fit between calculation and experiment.A2 → B2 → D0 3
The effects of alloying elements on the macroscopic morphologies in Cu-Fe base alloys were experimentally investigated. It was found that macroscopic homogeneity can be achieved by the addition of Mn, Ni, Al, or Co in the Cu-Fe base alloys, while the core-type macroscopic morphologies with Cu-rich or Fe-rich cores, which are radially separated as two layers in the inner and outer parts of the ingot solidified in the cast-iron mold, were formed by the addition of C, Cr, Mo, Nb, Si, or V. It is shown that the formation of the core-type macroscopic morphology is strongly connected with the existence of a stable miscibility gap of the liquid phase in the Cu-Fe base alloy due to the addition of alloying elements. The liquid phase with less volume fraction always forms the center part. This result can be explained by a mechanism that the minor droplets as the second phase are forced to move into the thermal center due to Marangoni motion, which is caused by the temperature dependence of interfacial energy between two liquid phases.
Recent progress on the thermodynamic databases of calculated phase diagrams in microsolders and Cu-based alloys is presented. A thermodynamic tool, Alloy Database for Microsolders (ADAMIS), is based on comprehensive experimental and thermodynamic data accumulated with the calculation of phase diagrams (CALPHAD) method and contains eight elements, namely, Ag, Bi, Cu, In, Sb, Sn, Zn, and Pb. It can handle all combinations of these elements and all composition ranges. The elements of Al and Au have also been added to ADAMIS within a limited range of compositions. Furthermore, a database of Cu-based alloys, including binary (Cu-X), ternary (Cu-Fe-X, Cu-Ni-X, and Cu-Cr-X), and multicomponent (Cu-Ni-Cr-Sn-Zn-Fe-Si) systems, has also been developed. Typical examples of the calculation and application of these databases are presented. These databases are expected to be a powerful tool for the development of Pb-free solders and Cu substrate materials as well as for promoting the understanding of the interfacial phenomena between them in electronic packaging technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.