A depressed autophagy has previously been reported in cystic fibrosis patients with the common F508del-CFTR mutation. This report describes the synthesis and preliminary biological characterization of a novel series of autophagy activators involving fatty acid cysteamine conjugates. These molecular entities were synthesized by first covalently linking cysteamine to docosahexaenoic acid. The resulting conjugate 1 synergistically activated autophagy in primary homozygous F508del-CFTR human bronchial epithelial (hBE) cells at submicromolar concentrations. When conjugate 1 was used in combination with the corrector lumacaftor and the potentiator ivacaftor, it showed an additive effect, as measured by the increase in the chloride current in a functional assay. In order to obtain a more stable form for oral dosing, the sulfhydryl group in conjugate 1 was converted into a functionalized disulfide moiety. The resulting conjugate 5 is orally bioavailable in the mouse, rat, and dog and allows a sustained delivery of the biologically active conjugate 1.
To gain insight into the mechanism(s) by which cells sense volume changes, specific predictions of the macromolecular crowding theory (A. P. Minton. In: Cellular and Molecular Physiology of Cell Volume Regulation, edited by K. Strange. Boca Raton, FL: CRC, 1994, p. 181-190. A. P. Minton, C. C. Colclasure, and J. C. Parker. Proc. Natl. Acad. Sci. USA 89: 10504-10506, 1992) were tested on the volume of internally perfused barnacle muscle cells. This preparation was chosen because it allows assessment of the effect on cell volume of changes in the intracellular macromolecular concentration and size while maintaining constant the ionic strength, membrane stretch, and osmolality. The predictions tested were that isotonic replacement of large macromolecules by smaller ones should induce volume decreases proportional to the initial macromolecular concentration and size as well as to the magnitude of the concentration reduction. The experimental results were consistent with these predictions: isotonic replacement of proteins or polymers with sucrose induced volume reductions, but this effect was only observed when the replacement was > or = 25% and the particular macromolecule had an average molecular mass of < or = 20 kDa and a concentration of at least 18 mg/ml. Volume reduction was effected by a mechanism identical with that of hypotonicity-induced regulatory volume decrease, namely, activation of verapamil-sensitive Ca2+ channels.
CFTR gene mutations that result in the introduction of premature termination codons (PTCs) are common in cystic fibrosis (CF). This mutation type causes a severe form of the disease, likely because of low CFTR messenger RNA (mRNA) expression as a result of nonsense-mediated mRNA decay, as well as the production of a nonfunctional, truncated CFTR protein. Current therapeutics for CF, which target residual protein function, are less effective in patients with these types of mutations due in part to low CFTR protein levels. Splice-switching antisense oligonucleotides (ASOs), designed to induce skipping of exons in order to restore the mRNA open reading frame, have shown therapeutic promise preclinically and clinically for a number of diseases. We hypothesized that ASO-mediated skipping of CFTR exon 23 would recover CFTR activity associated with terminating mutations in the exon, including CFTR p.W1282X, the fifth most common mutation in CF. Here, we show that CFTR lacking the amino acids encoding exon 23 is partially functional and responsive to corrector and modulator drugs currently in clinical use. ASO-induced exon 23 skipping rescued CFTR expression and chloride current in primary human bronchial epithelial cells isolated from a homozygote CFTR-W1282X patient. These results support the use of ASOs in treating CF patients with CFTR class I mutations in exon 23 that result in unstable CFTR mRNA and truncations of the CFTR protein.
The aims of this work were to determine: 1) whether Ca2+ exit via the plasmalemmal Ca2+ ATPase (PMCA) is coupled to H+ entry via a Ca2+/H+ exchange; 2) whether operation of PMCA has an absolute requirement on external H+ (Ho); and 3) the stoichiometry and voltage-dependence of the Ca2+/H+ exchange. Barnacle muscle cells were used because of the ease with which they can be internally-perfused (e.g., with 45Ca), voltage-clamped and impaled with a pH electrode. Thus, the simultaneous measurement of plasmalemmal Ca2+ and H+ fluxes can be measured. The effects of Ho, intracellular ATP, PMCA blockers, and membrane potential (VM) were studied on PMCA-mediated Ca2+/H+ exchange. The results indicate that: i) Ca2+ efflux is promoted by external acidification, is accompanied by a membrane depolarization, and by an intracellular acidification greater than the one resulting from Ho "leak" and PMCA-mediated ATP hydrolysis; ii) Ho-dependent Ca2+ efflux is inhibited by PMCA blockers and by ATP depletion and is accelerated by membrane depolarization (~3 fold by 20 mV depolarization); iii) the coupling ratio of the Ca2+/H+ exchange depends on Ho: at an extracellular pH (pHo)=6.5, the ratio is 1Ca2+:~3H+; at pHo=8.2, Ca2+ efflux rate is 3 times slower and the ratio is 1Ca2+: <1H+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.