We show that some pathological phenomena occur more often than one could expect, existing large algebraic structures (infinite dimensional vector spaces, algebras, positive cones or infinitely generated modules) enjoying certain special properties. In particular we construct infinite dimensional vector spaces of non-integrable, measurable functions, completing some recent results shown in García-Pacheco et al. (2009) [13], García-Pacheco and Seoane-Sepúlveda (2006) [15], Muñoz-Fernández et al. (2008) [20]. We prove, as well, the existence of dense and not barrelled spaces of sequences every non-zero element of which has a finite number of zero coordinates (giving partial answers to a problem originally posed by R.M. Aron and V.I. Gurariy in 2003).
Abstract. Some classical results about uniform convergence of unconditionally convergent series are generalized to weakly unconditionally Cauchy series by means of the matrix summability method for regular matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.