Abstract-With the increasing use of distributed energy (DE) systems in industry and its technological advancement, it is becoming more important to understand the integration of these systems with the electric power systems. New markets and benefits for DE applications include the ability to provide ancillary services, improve energy efficiency, enhance power system reliability, and allow customer choice. Advanced power electronic (PE) interfaces will allow DE systems to provide increased functionality through improved power quality and voltage/volt-ampere reactive (VAR) support, increase electrical system compatibility by reducing the fault contributions, and flexibility in operations with various other DE sources, while reducing overall interconnection costs. This paper will examine the system integration issues associated with DE systems and show the benefits of using PE interfaces for such applications.
Abstract-With the increasing use of distributed energy (DE) systems in industry and its technological advancement, it is becoming more important to understand the integration of these systems with the electric power systems. New markets and benefits for DE applications include the ability to provide ancillary services, improve energy efficiency, enhance power system reliability, and allow customer choice. Advanced power electronic (PE) interfaces will allow DE systems to provide increased functionality through improved power quality and voltage/volt-ampere reactive (VAR) support, increase electrical system compatibility by reducing the fault contributions, and flexibility in operations with various other DE sources, while reducing overall interconnection costs. This paper will examine the system integration issues associated with DE systems and show the benefits of using PE interfaces for such applications.
Abstract--Distributed energy resources can provide power to local loads in the electric distribution system and benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contains at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper details the development and testing of a highspeed static switch for distributed energy and microgrid applications.
Distributed resources can provide power to local loads in the electric distribution system as well as benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contain at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper describes research being conducted in microgrid standards, technologies, and applications to allow successful implementation of this concept.Christopher Pink (S'02 M'03) received his BS in engineering (electrical) from the Colorado School of Mines, Golden, Colorado. Mr. Pink is currently a research engineer at the National Renewable Energy Laboratory, where he is researching advanced systems to interconnect both renewable and conventional DR systems with the utility grid. Mr. Pink has experience the design, installation, and commissioning of protective relays, controls, and distribution systems.Thomas Basso (M'80) is a senior scientist in the NREL Distributed Energy and Electricity Reliability Program. Prior at NREL, he conducted outdoor accelerated weathering of photovoltaic (PV) modules and was NREL project leader for PV Management under the NREL/Department of Energy PV Advanced R&D Project. He serves as secretary for IEEE Standards Coordinating
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.